Leuven-Haifa High-Resolution Fundus Image Dataset for Retinal Blood Vessel Segmentation and Glaucoma Diagnosis

被引:1
|
作者
Van Eijgen, Jan [1 ,2 ]
Fhima, Jonathan [3 ,4 ]
Billen Moulin-Romsee, Marie-Isaline [2 ]
Behar, Joachim A. [3 ]
Christinaki, Eirini [1 ]
Stalmans, Ingeborg [1 ,2 ]
机构
[1] Katholieke Univ Leuven, Dept Neurosci, Res Grp Ophthalmol, Oude Markt 13, B-3000 Leuven, Belgium
[2] Univ Hosp UZ Leuven, Dept Ophthalmol, Herestr 49, B-3000 Leuven, Belgium
[3] Technion IIT, Fac Biomed Engn, Haifa, Israel
[4] Technion IIT, Dept Appl Math, Haifa, Israel
关键词
D O I
10.1038/s41597-024-03086-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The Leuven-Haifa dataset contains 240 disc-centered fundus images of 224 unique patients (75 patients with normal tension glaucoma, 63 patients with high tension glaucoma, 30 patients with other eye diseases and 56 healthy controls) from the University Hospitals of Leuven. The arterioles and venules of these images were both annotated by master students in medicine and corrected by a senior annotator. All senior segmentation corrections are provided as well as the junior segmentations of the test set. An open-source toolbox for the parametrization of segmentations was developed. Diagnosis, age, sex, vascular parameters as well as a quality score are provided as metadata. Potential reuse is envisioned as the development or external validation of blood vessels segmentation algorithms or study of the vasculature in glaucoma and the development of glaucoma diagnosis algorithms. The dataset is available on the KU Leuven Research Data Repository (RDR).
引用
收藏
页数:6
相关论文
共 24 条
  • [1] Leuven-Haifa High-Resolution Fundus Image Dataset for Retinal Blood Vessel Segmentation and Glaucoma Diagnosis
    Jan Van Eijgen
    Jonathan Fhima
    Marie-Isaline Billen Moulin-Romsée
    Joachim A. Behar
    Eirini Christinaki
    Ingeborg Stalmans
    [J]. Scientific Data, 11
  • [2] Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images
    Bendaoudi, Hamza
    Cheriet, Farida
    Manraj, Ashley
    Ben Tahar, Houssem
    Langlois, J. M. Pierre
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2018, 15 (01) : 31 - 42
  • [3] Flexible architectures for retinal blood vessel segmentation in high-resolution fundus images
    Hamza Bendaoudi
    Farida Cheriet
    Ashley Manraj
    Houssem Ben Tahar
    J. M. Pierre Langlois
    [J]. Journal of Real-Time Image Processing, 2018, 15 : 31 - 42
  • [4] Retinal vessel segmentation by improved matched filtering: evaluation on a new high-resolution fundus image database
    Odstrcilik, Jan
    Kolar, Radim
    Budai, Attila
    Hornegger, Joachim
    Jan, Jiri
    Gazarek, Jiri
    Kubena, Tomas
    Cernosek, Pavel
    Svoboda, Ondrej
    Angelopoulou, Elli
    [J]. IET IMAGE PROCESSING, 2013, 7 (04) : 373 - 383
  • [5] Blood Vessel Segmentation on Retinal Fundus Image- A Review
    Princye, P. Hosanna
    Lavanya, M.
    Sivasubramanian, S.
    Archana, M. K.
    [J]. 2020 SIXTH INTERNATIONAL CONFERENCE ON BIO SIGNALS, IMAGES, AND INSTRUMENTATION (ICBSII), 2020,
  • [6] Blood Vessel Analysis on High Resolution Fundus Retinal Images
    Parra-Dominguez, Gemma S.
    Sanchez-Yanez, Raul E.
    Ivvan Valdez, S.
    [J]. PATTERN RECOGNITION, MCPR 2019, 2019, 11524 : 302 - 311
  • [7] Real-Time Retinal Vessel Segmentation on High-Resolution Fundus Images Using Laplacian Pyramids
    Dachsel, Robert
    Joester, Annika
    Breuss, Michael
    [J]. IMAGE AND VIDEO TECHNOLOGY (PSIVT 2019), 2019, 11854 : 337 - 350
  • [8] Retinal blood vessel segmentation in high resolution fundus photographs using automated feature parameter estimation
    Ignacio Orlando, Jose
    Fracchia, Marcos
    del Rio, Valeria
    del Fresno, Mariana
    [J]. 13TH INTERNATIONAL CONFERENCE ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2017, 10572
  • [9] A High-Resolution Network with Strip Attention for Retinal Vessel Segmentation
    Ye, Zhipin
    Liu, Yingqian
    Jing, Teng
    He, Zhaoming
    Zhou, Ling
    [J]. SENSORS, 2023, 23 (21)