On symplectic Banach spaces

被引:2
|
作者
Castillo, Jesus M. F. [1 ]
Cuellar, Wilson [2 ]
Gonzalez, Manuel [3 ]
Pino, Raul [4 ]
机构
[1] Univ Extremadura, Inst Matemat Imuex, Badajoz 06011, Spain
[2] Univ Sao Paulo, Dept Matemat, Inst Matemat & Estat, Rua Matao 1010, BR-05508090 Sao Paulo, SP, Brazil
[3] Univ Cantabria, Dept Matemat, Santander 39071, Spain
[4] Univ Extremadura, Dept Matemat, Badajoz 06011, Spain
关键词
Symplectic Banach space; Symplectic operator; Rochberg spaces; Kalton-Peck space; Hilbert space; COMPLEX INTERPOLATION;
D O I
10.1007/s13398-023-01389-8
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend and generalize the result of Kalton and Swanson (Z(2) is a symplectic Banach space with no Lagrangian subspace) by showing that all higher order Rochgberg spaces R-(n) are symplectic Banach spaces with no Lagrangian subspaces. The nontrivial symplectic structure on Rochberg spaces of even order is the one induced by the natural duality; while the nontrivial symplectic structure on Rochberg spaces of odd order requires perturbation with a complex structure. We will also study symplectic structures on general Banach spaces and, motivated by the unexpected appearance of complex structures, we introduce and study almost symplectic structures.
引用
收藏
页数:22
相关论文
共 50 条