In silico screening of the effectiveness of natural compounds from algae as SARS-CoV-2 inhibitors: molecular docking, ADMT profile and molecular dynamic studies

被引:11
|
作者
Ali, Hani S. H. Mohammed [1 ,2 ]
Altayb, Hisham N. [3 ,5 ]
Bayoumi, Ahmed Atef Mohamed
El Omri, Abdelfatteh [1 ,6 ]
Firoz, Ahmad [1 ]
Chaieb, Kamel [3 ,4 ]
机构
[1] King Abdulaziz Univ, Fac Sci, Dept Biol Sci, Jeddah, Saudi Arabia
[2] King Abdulaziz Univ, Princess Dr Najla Bint Saud Al Saud Ctr Excellenc, Jeddah, Saudi Arabia
[3] King Abdulaziz Univ, Fac Sci, Dept Biochem, Bldg A 90, Jeddah 21589, Saudi Arabia
[4] Monastir Univ, Fac Pharm, Lab Anal Treatment & Valorizat Pollutants Environ, Monastir, Tunisia
[5] King Abdulaziz Univ, Ctr Artificial Intelligence Precis Med, Jeddah, Saudi Arabia
[6] Hamad Med Corp, Dept Surg, Surg Res Sect, Doha, Qatar
来源
关键词
Algae; antiviral; SARS-CoV-2; in silico study; molecular docking; ADMT; molecular dynamics; GENERAL FORCE-FIELD; RED ALGA; ANTIVIRAL ACTIVITY; PROTEIN; VITRO; SESQUITERPENES; BROMOPHENOLS; MERODITERPENOIDS; ASTAXANTHIN; TERPENOIDS;
D O I
10.1080/07391102.2022.2046640
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Marine species are known as rich sources of metabolites largely involved in the pharmaceutical industry. This study aimed to evaluate in silico the effect of natural compounds identified in algae on the SARS-CoV-2 Main protease, RNA-dependent-RNA polymerase activity (RdRp), endoribonuclease (NSP15) as well as on their interaction with viral spike protein. A total of 45 natural compounds were screened for their possible interaction on SARS-CoV-2 target proteins using Maestro interface for molecular docking, molecular dynamic (MD) simulation to estimate compounds binding affinities. Among the algal compounds screened in this study, three (Laminarin, Astaxanthin and 4'-chlorostypotriol triacetate) exhibited the lowest docking energy and best interaction with SARS-CoV-2 viral proteins (Main protease, RdRp, Nsp15, and spike protein). The complex of the main protease with laminarin shows the most stable RMSD during a 150 ns MD simulation time. Which indicates their possible inhibitory activity on SARS-CoV-2. Communicated by Ramaswamy H. Sarma
引用
下载
收藏
页码:3129 / 3144
页数:16
相关论文
共 50 条
  • [1] Identification of natural compounds as SARS-CoV-2 inhibitors via molecular docking and molecular dynamic simulation
    Han, Tiantian
    Luo, Ziqing
    Ji, Lichun
    Wu, Peng
    Li, Geng
    Liu, Xiaohong
    Lai, Yanni
    FRONTIERS IN MICROBIOLOGY, 2023, 13
  • [2] In Silico Screening of Natural Products as Potential Inhibitors of SARS-CoV-2 Using Molecular Docking Simulation
    Rajib Hossain
    Chandan Sarkar
    Shardar Mohammad Hafiz Hassan
    Rasel Ahmed Khan
    Mohammad Arman
    Pranta Ray
    Muhammad Torequl Islam
    Sevgi Durna Daştan
    Javad Sharifi-Rad
    Zainab M. Almarhoon
    Miquel Martorell
    William N. Setzer
    Daniela Calina
    Chinese Journal of Integrative Medicine, 2022, 28 : 249 - 256
  • [3] In Silico Screening of Natural Products as Potential Inhibitors of SARS-CoV-2 Using Molecular Docking Simulation
    Rajib Hossain
    Chandan Sarkar
    Shardar Mohammad Hafiz Hassan
    Rasel Ahmed Khan
    Mohammad Arman
    Pranta Ray
    Muhammad Torequl Islam
    Sevgi Durna Da tan
    Javad SharifiRad
    Zainab M Almarhoon
    Miquel Martorell
    William N Setzer
    Daniela Calina
    Chinese Journal of Integrative Medicine , 2022, (03) : 249 - 256
  • [4] In Silico Screening of Natural Products as Potential Inhibitors of SARS-CoV-2 Using Molecular Docking Simulation
    Rajib Hossain
    Chandan Sarkar
    Shardar Mohammad Hafiz Hassan
    Rasel Ahmed Khan
    Mohammad Arman
    Pranta Ray
    Muhammad Torequl Islam
    Sevgi Durna Da tan
    Javad Sharifi-Rad
    Zainab M. Almarhoon
    Miquel Martorell
    William N. Setzer
    Daniela Calina
    Chinese Journal of Integrative Medicine, 2022, 28 (03) : 249 - 256
  • [5] In Silico Screening of Natural Products as Potential Inhibitors of SARS-CoV-2 Using Molecular Docking Simulation
    Hossain, Rajib
    Sarkar, Chandan
    Hassan, Shardar Mohammad Hafiz
    Khan, Rasel Ahmed
    Arman, Mohammad
    Ray, Pranta
    Islam, Muhammad Torequl
    Dastan, Sevgi Durna
    Sharifi-Rad, Javad
    Almarhoon, Zainab M.
    Martorell, Miquel
    Setzer, William N.
    Calina, Daniela
    CHINESE JOURNAL OF INTEGRATIVE MEDICINE, 2022, 28 (03) : 249 - 256
  • [6] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Mukherjee, Aniruddhya
    Pandey, Khushhali Menaria
    Ojha, Krishna Kumar
    Sahu, Sumanta Kumar
    BENI-SUEF UNIVERSITY JOURNAL OF BASIC AND APPLIED SCIENCES, 2023, 12 (01)
  • [7] Identification of possible SARS-CoV-2 main protease inhibitors: in silico molecular docking and dynamic simulation studies
    Aniruddhya Mukherjee
    Khushhali Menaria Pandey
    Krishna Kumar Ojha
    Sumanta Kumar Sahu
    Beni-Suef University Journal of Basic and Applied Sciences, 12
  • [8] Identification of musk compounds as inhibitors of the main SARS-CoV-2 protease by molecular docking and molecular dynamics studies
    Belhassan, Assia
    Salgado, Guillermo
    Mendoza-Huizar, Luis Humberto
    Zaki, Hanane
    Chtita, Samir
    Lakhlifi, Tahar
    Bouachrine, Mohammed
    Gerli Candia, Lorena
    Cardona, Wilson
    Journal of the Serbian Chemical Society, 2024, 89 (11) : 1447 - 1460
  • [9] In Silico molecular docking and dynamic analysis of natural compounds against major non-structural proteins of SARS-COV-2
    Rehman, Muneeb U.
    Ali, Aarif
    Ansar, Ruhban
    Arafah, Azher
    Imtiyaz, Zuha
    Wani, Tanveer A.
    Zargar, Seema
    Ganie, Showkat A.
    JOURNAL OF BIOMOLECULAR STRUCTURE & DYNAMICS, 2023, 41 (18): : 9072 - 9088
  • [10] Natural inhibitors of SARS-CoV-2 main protease: structure based pharmacophore modeling, molecular docking and molecular dynamic simulation studies
    Halimi, Mohammad
    Bararpour, Parvindokht
    JOURNAL OF MOLECULAR MODELING, 2022, 28 (09)