共 50 条
Drugging aquaporins
被引:4
|作者:
Bill, Roslyn M.
[1
]
机构:
[1] Aston Univ, Coll Hlth & Life Sci, Birmingham B4 7ET, England
来源:
基金:
英国生物技术与生命科学研究理事会;
关键词:
Aquaporin water channels;
Membrane proteins;
Inhibitors;
Health;
Disease;
D O I:
10.1016/j.bbamem.2023.184164
中图分类号:
Q5 [生物化学];
Q7 [分子生物学];
学科分类号:
071010 ;
081704 ;
摘要:
Water is essential for all life because it is required for the proper functioning of the cells and tissues of all organisms. It crosses biological membranes down osmotic gradients through the pores of aquaporin membrane channels at rates of up to 3 billion molecules per second. In the twenty years since Peter Agre was awarded the 2003 Nobel Prize in Chemistry for the discovery of the aquaporin family, aquaporin structure and function have become established in the literature. As a consequence, we understand in fine detail the mechanism by which aquaporins facilitate membrane water flow while excluding protons. We also know that some aquaporins facilitate the permeation of other small neutral solutes, ions or even unexpected substrates across biological membranes. The thirteen aquaporins in the human body have been implicated in pathologies including oedema, epilepsy, cancer cell migration, tumour angiogenesis, metabolic disorders and inflammation. Surprisingly, however, there is no aquaporin-targeted drug in the clinic. Some scientists have therefore concluded that aquaporins are intrinsically non-druggable targets. Discovering medicines to treat disorders of water homeostasis is thus an enduring challenge for the aquaporin field. Success in this endeavour will meet the urgent clinical need of millions of patients suffering from a range of life-threatening conditions and for whom no pharmacological interventions are currently available.
引用
收藏
页数:4
相关论文