PROFIT: projection-based test in longitudinal functional data

被引:0
|
作者
Koner, Salil [1 ,4 ]
Park, So Young [2 ]
Staicu, Ana-Maria [3 ]
机构
[1] Duke Univ, Dept Biostat & Bioinformat, Sch Med, Durham, NC USA
[2] Elli Lilly & Co, Youngstown, OH USA
[3] North Carolina State Univ, Dept Stat, Raleigh, NC USA
[4] 2424 Erwin Rd,11081 Hock Plaza, Durham, NC 27705 USA
关键词
Longitudinal functional data analysis; uniform convergence; likelihood ratio test; fractional anisotropy; multiple sclerosis; LIKELIHOOD RATIO TESTS; LINEAR MIXED MODELS; STATISTICAL INFERENCES; REGRESSION; EQUALITY; VARIANCE; SPLINES; SPARSE; ANOVA;
D O I
10.1080/10485252.2023.2294885
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In many modern applications, a dependent functional response is observed for each subject over repeated time, leading to longitudinal functional data. In this paper, we propose a novel statistical procedure to test whether the mean function varies over time. Our approach relies on reducing the dimension of the response using data-driven orthogonal projections, and employs likelihood-based hypothesis testing. We investigate the methodology theoretically and discuss a computationally efficient implementation. The proposed test maintains the Type-1 error rate, and shows excellent power to detect departures from the null hypothesis in finite sample simulation studies. We apply our method to the longitudinal diffusion tensor imaging study of multiple sclerosis (MS) patients to formally assess whether the brain's healthy tissue, as summarised by the fractional anisotropy (FA) profile, degrades over time during the study period.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Projection-based classification for functional data
    Darabi, Nadiyeh
    Hosseini-Nasab, S. Mohammad E.
    STATISTICS, 2020, 54 (03) : 544 - 558
  • [2] Projection-based outlier detection in functional data
    Ren, Haojie
    Chen, Nan
    Zou, Changliang
    BIOMETRIKA, 2017, 104 (02) : 411 - 423
  • [3] Robust estimation and classification for functional data via projection-based depth notions
    Cuevas, Antonio
    Febrero, Manuel
    Fraiman, Ricardo
    COMPUTATIONAL STATISTICS, 2007, 22 (03) : 481 - 496
  • [4] Robust estimation and classification for functional data via projection-based depth notions
    Antonio Cuevas
    Manuel Febrero
    Ricardo Fraiman
    Computational Statistics, 2007, 22 : 481 - 496
  • [5] On projection-based tests for directional and compositional data
    Cuesta-Albertos, Juan A.
    Cuevas, Antonio
    Fraiman, Ricardo
    STATISTICS AND COMPUTING, 2009, 19 (04) : 367 - 380
  • [6] On projection-based tests for directional and compositional data
    Juan A. Cuesta-Albertos
    Antonio Cuevas
    Ricardo Fraiman
    Statistics and Computing, 2009, 19
  • [7] VDVR: Verifiable Visualization of Projection-Based Data
    Zheng, Ziyi
    Xu, Wei
    Mueller, Klaus
    IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2010, 16 (06) : 1515 - 1524
  • [8] Projection-based High-dimensional Sign Test
    Hui Chen
    Chang Liang Zou
    Run Ze Li
    Acta Mathematica Sinica, English Series, 2022, 38 : 683 - 708
  • [9] A PROJECTION-BASED ADAPTIVE-TO-MODEL TEST FOR REGRESSIONS
    Tan, Falong
    Zhu, Xuehu
    Zhu, Lixing
    STATISTICA SINICA, 2018, 28 (01) : 157 - 188
  • [10] Projection-based High-dimensional Sign Test
    Hui CHEN
    Chang Liang ZOU
    Run Ze LI
    Acta Mathematica Sinica,English Series, 2022, (04) : 683 - 708