Background. A growing number of experiments have shown that microRNAs (miRNAs) can be used as target of small molecules (SMs) to regulate gene expression for treating diseases. Therefore, identifying SM-related miRNAs is helpful for the treatment of diseases in the domain of medical investigation. Methods. This article presents a new computational model, called NIRBMSMMA (neighborhood-based inference (NI) and restricted Boltzmann machine (RBM)), which we developed to identify potential small molecule-miRNA associations (NIRBMSMMA). First, grounded on known SM-miRNAs associations, SM similarity and miRNA similarity, NI was used to predict score of an unknown SM-miRNA pair by reckoning the sum of known associations between neighbors of the SM (miRNA) and the miRNA (SM). Second, utilizing a two-layered generative stochastic artificial neural network, RBM was used to predict SM-miRNA association by learning potential probability distribution from known SM-miRNA associations. At last, an ensemble learning model was conducted to combine NI and RBM for identifying potential SMmiRNA associations. Results. Furthermore, we conducted global leave one out cross validation (LOOCV), miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation to assess performance of NIRBMSMMA based on three datasets. Results showed that NIRBMSMMA obtained areas under the curve (AUC) of 0.9912, 0.9875, 0.8376 and 0.9898 & PLUSMN; 0.0009 under global LOOCV, miRNA-fixed LOOCV, SM-fixed LOOCV and five-fold cross validation based on dataset 1, respectively. For dataset 2, the AUCs are 0.8645, 0.8720, 0.7066 and 0.8547 & PLUSMN; 0.0046 in turn. For dataset 3, the AUCs are 0.9884, 0.9802, 0.8239 and 0.9870 & PLUSMN; 0.0015 in turn. Also, we conducted case studies to further assess the predictive performance of NIRBMSMMA. These results illustrated the proposed model is a useful tool in predicting potential SM-miRNA associations.