Efficient and scalable encapsulation process of highly conductive 1T-MoS2 nanosheets on Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials for high-performance lithium-ion batteries

被引:9
|
作者
Lee, Sanghyun [1 ]
Hwang, Jeonguk [1 ]
Park, Changyong [1 ]
Ahn, Suhyun [1 ]
Do, Kwanghyun [1 ]
Kim, Sungwook [2 ]
Ahn, Heejoon [1 ,2 ,3 ]
机构
[1] Hanyang Univ, Dept Organ & Nano Engn, Human Tech Convergence Program, 222 Wangsimni Ro, Seoul 04763, South Korea
[2] Hanyang Univ, Dept Battery Engn, 222 Wangsimni Ro, Seoul 04763, South Korea
[3] Hanyang Univ, Inst Nano Sci & Technol, 222 Wangsimni Ro, Seoul 04763, South Korea
基金
新加坡国家研究基金会;
关键词
Lithium -ion batteries; Ni-rich layered cathode; Nanosheet coating; Molybdenum disulfide nanosheets; Electrostatic attraction; ENHANCED ELECTROCHEMICAL PERFORMANCE; 2-DIMENSIONAL MOS2; STRUCTURAL-CHANGES; THERMAL-STABILITY; CYCLING STABILITY; ENERGY-STORAGE; OXIDE; LAYER; LINI0.8CO0.1MN0.1O2;
D O I
10.1016/j.cej.2023.144209
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Ni-rich LiNi1-x-yCoxMnyO2 (NCM) is an attractive cathode material that can meet the growing global demand of the Lithium-ion battery market owing to its high energy density and low cost. However, it still suffers from cyclic and thermal instability due to several issues, such as structural deterioration and excessive cathode electrolyte interface (CEI) layer formation arising from side reactions occurring at the NCM particle surface. In this study, molybdenum disulfide (MoS2) nanosheets with a metallic 1T phase are synthesized by chemical exfoliation, functionalized with polyethyleneimine (PEI), and uniformly coated on the surface of Ni-rich NCM particles through electrostatic interactions. As a result, the ceMoS2-PEI layer effectively alleviates the electrochemical performance degradation of NCM caused by irreversible phase transitions, microcrack formation, transition metal dissolution, and thick CEI layer formation by suppressing side reactions due to direct contact with the organic electrolyte or hydrofluoric acid on the surface of NCM. In addition, the ceMoS2-PEI layer provides a sufficient transport pathway for charge transfer and Li+ ion diffusion, thereby mitigating electrode polarization and impedance increase. Consequently, NCM/ceMoS2-PEI electrodes exhibit a high discharge capacity of 150.6 mAh g+1 at 5C and outstanding capacity retention of 96.9 % after 100 cycles at 1C. Moreover, further cycle tests in harsh environments, such as high mass loading and operating temperature, demonstrate that the ceMoS2-PEI layer coating more effectively improves the structural and thermal stability of the Ni-rich NCM in harsh environments.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Investigation of W6+-doped in high-nickel LiNi0.83Co0.11Mn0.06O2 cathode materials for high-performance lithium-ion batteries
    Wang, Jiale
    Liu, Chengjin
    Wang, Qing
    Xu, Guanli
    Miao, Chang
    Xu, Mingbiao
    Wang, Changjun
    Xiao, Wei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 628 : 338 - 349
  • [2] In-situ Ti4+-doped modification of layer-structured Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials for high-energy lithium-ion batteries
    Yi, Zhicheng
    Liu, Chengjin
    Miao, Chang
    Wang, Zhiyan
    Wang, Jiale
    Xin, Yu
    Xiao, Wei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2025, 677 : 91 - 100
  • [3] Ti modification to improve the cyclic stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials by suppressing mechanical fracture
    Cheng, Xu
    Li, Yalin
    Zhao, Gaolei
    Qiang, Wenjiang
    Huang, Bingxin
    CERAMICS INTERNATIONAL, 2022, 48 (19) : 27849 - 27858
  • [4] Structural design of high-performance Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode materials enhanced by Mg2+ doping and Li3PO4 coating for lithium ion battery
    Xiao, Wei
    Nie, Yan
    Miao, Chang
    Wang, Jiale
    Tan, Yi
    Wen, Minyue
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 607 : 1071 - 1082
  • [5] Revealing the effect of Nb5+on the electrochemical performance of nickel-rich layered LiNi0.83Co0.11Mn0.06O2 oxide cathode for lithium-ion batteries
    Wang, Jiale
    Yi, Zhicheng
    Liu, Chengjin
    He, Manyi
    Miao, Chang
    Li, Jieqiong
    Xu, Guanli
    Xiao, Wei
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2023, 635 : 295 - 304
  • [6] High-Ni layered LiNi0.83Co0.11Mn0.06O2 modified by Nb for Li-ion batteries
    Teng, Tao
    Xiao, Li
    Zheng, Jiangfeng
    Wen, Dingqiang
    Chen, Han
    Zhu, Yirong
    CERAMICS INTERNATIONAL, 2022, 48 (06) : 8680 - 8688
  • [7] Effects of Morphological Collapse of Sphere Secondary Particles on Electrochemical Properties of a LiNi0.83Co0.11Mn0.06O2 Cathode Material for Lithium-Ion Batteries
    Park, Jun-Seok
    Han, Un-Gi
    Cho, Gyu-Bong
    Ahn, Hyo-Jun
    Kim, Ki-Won
    Ahn, Jou-Hyeon
    Cho, Kwon-Koo
    SCIENCE OF ADVANCED MATERIALS, 2020, 12 (09) : 1278 - 1282
  • [8] Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5 V via 2,4-difluorobiphenyl additive
    Ahn, Jinhyeok
    Im, Jinsol
    Seo, Hyewon
    Yoon, Sukeun
    Cho, Kuk Young
    Journal of Power Sources, 2021, 512
  • [9] Enhancing the cycling stability of Ni-rich LiNi0.83Co0.11Mn0.06O2 cathode at 4.5 V via 2,4-difluorobiphenyl additive
    Ahn, Jinhyeok
    Im, Jinsol
    Seo, Hyewon
    Yoon, Sukeun
    Cho, Kuk Young
    JOURNAL OF POWER SOURCES, 2021, 512
  • [10] Electrolyte Optimization to Improve the High-Voltage Operation of Single-Crystal LiNi0.83Co0.11Mn0.06O2 in Lithium-Ion Batteries
    Zhao, Wengao
    Si, Mayan
    Wang, Kuan
    Brack, Enzo
    Zhang, Ziyan
    Fan, Xinming
    Battaglia, Corsin
    BATTERIES-BASEL, 2023, 9 (11):