Comparative evaluation of operational land imager sensor on board landsat 8 and landsat 9 for land use land cover mapping over a heterogeneous landscape

被引:7
|
作者
Shahfahad [1 ]
Talukdar, Swapan [1 ]
Naikoo, Mohd Waseem [1 ]
Rahman, Atiqur S. [1 ]
Gagnon, Alexandre S. [2 ]
Islam, Abu Reza Md Towfiqul [3 ]
Mosavi, Amirhosein [4 ]
机构
[1] Jamia Millia Islamia, Dept Geog, Fac Nat Sci, New Delhi, India
[2] Liverpool John Moores Univ, Dept Geog, Liverpool, England
[3] Begum Rokeya Univ, Dept Disaster Management, Rangpur, Bangladesh
[4] Obuda Univ, Budapest, Hungary
关键词
Landsat; land use land cover; surface biophysical parameters; machine learning; artificial intelligence; MACHINE LEARNING ALGORITHMS; WATER INDEX NDWI; CLASSIFICATION; PERFORMANCE; ACCURACY; SCIENCE; FOREST;
D O I
10.1080/10106049.2022.2152496
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Since its advent in 1972, the Landsat satellites have witnessed consistent improvements in sensor characteristics, which have significantly improved accuracy. In this study, a comparison of the accuracy of Landsat Operational Land Imager (OLI) and OLI-2 satellites in land use land cover (LULC) mapping has been made. For this, image fusion techniques have been applied to enhance the spatial resolution of both OLI and OLI-2 multispectral images, and then a support vector machine (SVM) classifier has been used for LULC mapping. The results show that LULC classification from OLI-2 has better accuracy than OLI. The validation of classified LULC maps shows that the OLI-2 data is more accurate in distinguishing dense and sparse vegetation as well as darker and lighter objects. The relationship between LULC maps and surface biophysical parameters using Local Moran's I also shows better performance of the OLI-2 sensor in LULC mapping than the OLI sensor.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] HOW LANDSAT 9 IS SUPERIOR TO LANDSAT 8: COMPARATIVE ASSESSMENT OF LAND USE LAND COVER CLASSIFICATION AND LAND SURFACE TEMPERATURE
    Ghasempour, F.
    Sekertekin, A.
    Kutoglu, S. H.
    [J]. ISPRS GEOSPATIAL CONFERENCE 2022, JOINT 6TH SENSORS AND MODELS IN PHOTOGRAMMETRY AND REMOTE SENSING, SMPR/4TH GEOSPATIAL INFORMATION RESEARCH, GIRESEARCH CONFERENCES, VOL. 10-4, 2023, : 221 - 227
  • [2] Land cover classification using Landsat 8 Operational Land Imager data in Beijing, China
    Jia, Kun
    Wei, Xiangqin
    Gu, Xingfa
    Yao, Yunjun
    Xie, Xianhong
    Li, Bin
    [J]. GEOCARTO INTERNATIONAL, 2014, 29 (08) : 941 - 951
  • [3] Bias Estimation for the Landsat 8 Operational Land Imager
    Vanderwerff, K.
    Morfitt, R.
    [J]. EARTH OBSERVING SYSTEMS XVI, 2011, 8153
  • [4] Noise Evaluation of early images for Landsat 8 Operational Land Imager
    Ren, Huazhong
    Du, Chen
    Liu, Rongyuan
    Qin, Qiming
    Yan, Guangjian
    Li, Zhao-Liang
    Meng, Jinjie
    [J]. OPTICS EXPRESS, 2014, 22 (22): : 27270 - 27280
  • [5] Performance of Landsat 8 Operational Land Imager for mapping ice sheet velocity
    Jeong, Seongsu
    Howat, Ian M.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2015, 170 : 90 - 101
  • [6] Radiometric performance of the Landsat 9 Operational Land Imager over the first 8 months on orbit
    Micijevic, Esad
    Barsi, Julia
    Haque, Md Obaidul
    Levy, Raviv
    Anderson, Cody
    Thome, Kurt
    Czapla-Myers, Jeffrey
    Helder, Dennis
    [J]. EARTH OBSERVING SYSTEMS XXVII, 2022, 12232
  • [7] On-orbit performance of the Landsat 8 Operational Land Imager
    Micijevic, Esad
    Vanderwerff, Kelly
    Scaramuzza, Pat
    Morfitt, Ron
    Barsi, Julia
    Levy, Raviv
    [J]. EARTH OBSERVING SYSTEMS XIX, 2014, 9218
  • [8] The Spectral Response of the Landsat-8 Operational Land Imager
    Barsi, Julia A.
    Lee, Kenton
    Kvaran, Geir
    Markham, Brian L.
    Pedelty, Jeffrey A.
    [J]. REMOTE SENSING, 2014, 6 (10): : 10232 - 10251
  • [9] THE LANDSAT DATA CONTINUITY MISSION OPERATIONAL LAND IMAGER (OLI) SENSOR
    Markham, Brian L.
    Knight, Edward J.
    Canova, Brent
    Donley, Eric
    Kvaran, Geir
    Lee, Kenton
    Barsi, Julia A.
    Pedelty, Jeffrey A.
    Dabney, Philip W.
    Irons, James R.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 6995 - 6998
  • [10] Land Cover Classification of Imagery from Landsat Operational Land Imager Based on Optimum Index Factor
    Acharya, Tri Dev
    Yang, In Tae
    Lee, Dong Ha
    [J]. SENSORS AND MATERIALS, 2018, 30 (08) : 1753 - 1764