Fast and Accurate Estimation of Evapotranspiration for Smart Agriculture

被引:1
|
作者
Li, Weiyu [1 ]
Tartakovsky, Daniel M. [1 ]
机构
[1] Stanford Univ, Dept Energy Sci & Engn, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
data assimilation; unsaturated; vadose; soil-moisture sensor; WATER-UPTAKE; DATA ASSIMILATION; UNSATURATED FLOW; IRRIGATION; MODEL; SIMULATION; BALANCE; BUDGET; SOILS; FIELD;
D O I
10.1029/2023WR034535
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The ability to quantify evapotranspiration (ET) is crucial for smart agriculture and sustainable groundwater management. Efficient ET estimation strategies often rely on the vertical-flow assumption to assimilate data from soil-moisture sensors. While adequate in some large-scale applications, this assumption fails when the horizontal component of the local flow velocity is not negligible due to, for example, soil heterogeneity or drip irrigation. We present novel implementations of the ensemble Kalman filter (EnKF) and the maximum likelihood estimation (MLE), which enable us to infer spatially varying ET rates and root water uptake profiles from soil-moisture measurements. While the standard versions of EnKF and MLE update the predicted soil moisture prior to computing ET, ours treat the ET sink term in Richards' equation as an updatable observable. We test the prediction accuracy and computational efficiency of our methods in a setting representative of drip irrigation. Our strategies accurately estimate the total ET rates and root-uptake profiles and do so up to two-orders of magnitude faster than the standard EnKF.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Evapotranspiration Estimation with Small UAVs in Precision Agriculture
    Niu, Haoyu
    Hollenbeck, Derek
    Zhao, Tiebiao
    Wang, Dong
    Chen, YangQuan
    SENSORS, 2020, 20 (22) : 1 - 28
  • [2] FAST: Fast and Accurate Scale Estimation for Tracking
    Ma, Haoyi
    Lin, Zongli
    Acton, Scott T.
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 161 - 165
  • [3] On the suitability of stacking-based ensembles in smart agriculture for evapotranspiration prediction
    Martin, Juan
    Saez, Jose A.
    Corchado, Emilio
    APPLIED SOFT COMPUTING, 2021, 108
  • [4] A review of evapotranspiration estimation methods for climate-smart agriculture tools under a changing climate: vulnerabilities, consequences, and implications
    Lakhiar, Imran Ali
    Yan, Haofang
    Zhang, Chuan
    Zhang, Jianyun
    Wang, Guoqing
    Deng, Shuaishuai
    Syed, Tabinda Naz
    Wang, Biyu
    Zhou, Rui
    JOURNAL OF WATER AND CLIMATE CHANGE, 2025, 16 (02) : 249 - 288
  • [5] THE IMPACT AND VALUE OF ACCURATE EVAPOTRANSPIRATION NETWORKS IN TEXAS HIGH PLAINS PRODUCTION AGRICULTURE
    Marek, T. H.
    Porter, D. O.
    Howell, T. A., Sr.
    Marek, G. W.
    Brauer, D.
    APPLIED ENGINEERING IN AGRICULTURE, 2020, 36 (04) : 451 - 455
  • [6] AFR: Accurate and Fast RFID Estimation
    Jiang, Wenchao
    Zhu, Yanmin
    Li, Bo
    2013 IEEE GLOBAL COMMUNICATIONS CONFERENCE (GLOBECOM), 2013, : 237 - 242
  • [7] SuperFine: Fast and Accurate Supertree Estimation
    Swenson, M. Shel
    Suri, Rahul
    Linder, C. Randal
    Warnow, Tandy
    SYSTEMATIC BIOLOGY, 2012, 61 (02) : 214 - 227
  • [8] Fast and Accurate Estimation of Typed Graphlets
    Rossi, Ryan A.
    Rao, Anup
    Mai, Tung
    Ahmed, Nesreen K.
    WWW'20: COMPANION PROCEEDINGS OF THE WEB CONFERENCE 2020, 2020, : 32 - 34
  • [9] Fast and Accurate Structure and Motion Estimation
    Hedborg, Johan
    Forssen, Per-Erik
    Felsberg, Michael
    ADVANCES IN VISUAL COMPUTING, PT 1, PROCEEDINGS, 2009, 5875 : 211 - 222
  • [10] Fast and Accurate Stochastic Gradient Estimation
    Chen, Beidi
    Xu, Yingchen
    Shrivastava, Anshumali
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 32 (NIPS 2019), 2019, 32