High-frequency homogenization of nonstationary periodic equations

被引:2
|
作者
Dorodnyi, M. A. [1 ]
机构
[1] St Petersburg State Univ, St Petersburg, Russia
关键词
Schrodinger-type equations; hyperbolic equations; spectral bands; homogenization; operator error estimates; GREENS-FUNCTION ASYMPTOTICS; PARABOLIC CAUCHY-PROBLEM; BLOCH APPROXIMATION; SPECTRAL APPROACH; INTERNAL EDGES; THEOREMS; GAP;
D O I
10.1080/00036811.2023.2199031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In L-2(R), we consider an elliptic differential operator A(e), e >0, of the form A(e) = - d/dx g(x/e) d/dx + e(-2)V(x/e) with periodic coefficients. For the nonstationary Schrodinger equation with the Hamiltonian Ae and for the hyperbolic equation with the operator Ae, analogs of homogenization problems, related to the edges of the spectral bands of the operator A(e), are studied (the so-called high-frequency homogenization). For the solutions of the Cauchy problems for these equations with special initial data, approximations in L-2(R)-norm for small e are obtained.
引用
收藏
页码:533 / 561
页数:29
相关论文
共 50 条
  • [1] High-frequency homogenization for periodic media
    Craster, R. V.
    Kaplunov, J.
    Pichugin, A. V.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2010, 466 (2120): : 2341 - 2362
  • [2] High-frequency homogenization of multidimensional hyperbolic equations
    Dorodnyi, M. A.
    [J]. APPLICABLE ANALYSIS, 2024,
  • [3] High-frequency homogenization for travelling waves in periodic media
    Harutyunyan, Davit
    Milton, Graeme W.
    Craster, Richard V.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2016, 472 (2191):
  • [4] HIGH-FREQUENCY HOMOGENIZATION FOR ELECTROMAGNETIC HEATING OF PERIODIC MEDIA
    Gaone, Joseph M.
    Tilley, Burt S.
    Yakovlev, Vadim V.
    [J]. MULTISCALE MODELING & SIMULATION, 2021, 19 (03): : 1285 - 1309
  • [5] High-frequency homogenization in periodic media with imperfect interfaces
    Assier, Raphael C.
    Touboul, Marie
    Lombard, Bruno
    Bellis, Cedric
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2020, 476 (2244):
  • [6] OPERATOR ERROR ESTIMATES IN THE HOMOGENIZATION PROBLEM FOR NONSTATIONARY PERIODIC EQUATIONS
    Birman, M. Sh.
    Suslina, T. A.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2009, 20 (06) : 873 - 928
  • [7] High-frequency homogenization for layered hyperbolic metamaterials
    Krokhin, A. A.
    Arriaga, J.
    Gumen, L. N.
    Drachev, V. P.
    [J]. PHYSICAL REVIEW B, 2016, 93 (07)
  • [8] Homogenization of nonstationary equations with contrasting coefficients
    Sandrakov, GV
    [J]. DOKLADY AKADEMII NAUK, 1997, 355 (05) : 605 - 608
  • [9] UTILIZATION OF KARDS EQUATIONS TO SUPPRESS THE HIGH-FREQUENCY REFLECTANCE BANDS OF PERIODIC MULTILAYERS
    BAUMEISTER, P
    [J]. APPLIED OPTICS, 1985, 24 (16): : 2687 - 2689
  • [10] Homogenization of the equations of high frequency nonlinear acoustics
    Lapshin, EA
    Panasenko, GP
    [J]. COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 931 - 936