Causal Property Based Anti-conflict Modeling with Hybrid Data Augmentation for Unbiased Scene Graph Generation

被引:0
|
作者
Zhang, Ruonan [1 ,2 ]
An, Gaoyun [1 ,2 ]
机构
[1] Beijing Jiaotong Univ, Inst Informat Sci, Beijing 100044, Peoples R China
[2] Beijing Key Lab Adv Informat Sci & Network Techno, Beijing 100044, Peoples R China
来源
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Scene graph generation; D-S evidence theory; Data augmentation;
D O I
10.1007/978-3-031-26316-3_34
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Scene Graph Generation (SGG) aims to detect visual triplets of pairwise objects based on object detection. There are three key factors being explored to determine a scene graph: visual information, local and global context, and prior knowledge. However, conventional methods balancing losses among these factors lead to conflict, causing ambiguity, inaccuracy, and inconsistency. In this work, to apply evidence theory to scene graph generation, a novel plug-and-play Causal Property based Anti-conflict Modeling (CPAM) module is proposed, which models key factors by Dempster-Shafer evidence theory, and integrates quantitative information effectively. Compared with the existing methods, the proposed CPAM makes the training process interpretable, and also manages to cover more fine-grained relationships after inconsistencies reduction. Furthermore, we propose a Hybrid Data Augmentation (HDA) method, which facilitates data transfer as well as conventional debiasing methods to enhance the dataset. By combining CPAM with HDA, significant improvement has been achieved over the previous state-of-the-art methods. And extensive ablation studies have also been conducted to demonstrate the effectiveness of our method.
引用
收藏
页码:571 / 587
页数:17
相关论文
共 14 条
  • [1] TEMPLATE-GUIDED DATA AUGMENTATION FOR UNBIASED SCENE GRAPH GENERATION
    Zang, Yujie
    Li, Yaochen
    Cao, Luguang
    Lu, Ruitao
    2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024, 2024, : 3510 - 3514
  • [2] Unbiased Scene Graph Generation via Two-Stage Causal Modeling
    Sun, Shuzhou
    Zhi, Shuaifeng
    Liao, Qing
    Heikkila, Janne
    Liu, Li
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2023, 45 (10) : 12562 - 12580
  • [3] Compositional Feature Augmentation for Unbiased Scene Graph Generation
    Li, Lin
    Chen, Guikun
    Xiao, Jun
    Yang, Yi
    Wang, Chunping
    Chen, Long
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 21628 - 21638
  • [4] Fast Contextual Scene Graph Generation with Unbiased Context Augmentation
    Jin, Tianlei
    Guo, Fangtai
    Meng, Qiwei
    Zhu, Shiqiang
    Xi, Xiangming
    Wang, Wen
    Mu, Zonghao
    Song, Wei
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR, 2023, : 6302 - 6311
  • [5] Relation-Specific Feature Augmentation for unbiased scene graph generation
    Liu, Zhihong
    Wang, Jianji
    Chen, Hui
    Ma, Yongqiang
    Zheng, Nanning
    PATTERN RECOGNITION, 2025, 157
  • [6] Dual-Branch Hybrid Learning Network for Unbiased Scene Graph Generation
    Zheng, Chaofan
    Gao, Lianli
    Lyu, Xinyu
    Zeng, Pengpeng
    El Saddik, Abdulmotaleb
    Shen, Heng Tao
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (03) : 1743 - 1756
  • [7] Stacked Hybrid-Attention and Group Collaborative Learning for Unbiased Scene Graph Generation
    Dong, Xingning
    Gan, Tian
    Song, Xuemeng
    Wu, Jianlong
    Cheng, Yuan
    Nie, Liqiang
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19405 - 19414
  • [8] PPDL: Predicate Probability Distribution based Loss for Unbiased Scene Graph Generation
    Li, Wei
    Zhang, Haiwei
    Bai, Qijie
    Zhao, Guoqing
    Jiang, Ning
    Yuan, Xiaojie
    2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 19425 - 19434
  • [9] A New Training Data Organization Form and Training Mode for Unbiased Scene Graph Generation
    Xu, Hongbo
    Wang, Lichun
    Xu, Kai
    Fu, Fangyu
    Yin, Baocai
    Huang, Qingming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (07) : 5295 - 5305
  • [10] Semantic Diversity-Aware Prototype-Based Learning for Unbiased Scene Graph Generation
    Jeon, Jaehyeong
    Kim, Kibum
    Yoon, Kanghoon
    Park, Chanyoung
    COMPUTER VISION - ECCV 2024, PT XXXVII, 2025, 15095 : 379 - 395