Optimal control and parameter identification of a reaction-diffusion network propagation model

被引:9
|
作者
Zhu, Linhe [1 ]
Yuan, Tianyu [1 ]
机构
[1] Jiangsu Univ, Sch Math Sci, Zhenjiang 212013, Jiangsu, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Reaction-diffusion system; Parameter identification; Optimization method; Turing pattern; Complex networks; RUMOR-SPREADING MODEL; DYNAMICS;
D O I
10.1007/s11071-023-08949-y
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
In the era of rapid development of the network, information security is a topic worthy of attention. This paper establishes a reaction-diffusion rumor propagation model with secondary transmission mechanism. We derive the necessary conditions for its Turing instability and then obtain that an increase in media refutation rate gamma can effectively suppress rumors through sensitivity analysis. By converting the parameter gamma to gamma (x, t) and using the Projected Gradient Method, rumors are controlled as the target propagation mode. By applying the method of optimal control, the parameter identification of the system is achieved through three algorithms. The Projected Gradient Method can effectively identify the patterns of two unknown parameters and has global convergence, but the convergence speed is relatively slow. The Barzilar-Borwein method and the BFGS Quasi-Newton Algorithm can effectively improve the convergence speed while ensuring the reliability of the results. The Barzilar-Borwein method is used to effectively identify six parameters of the system, with a relative error of only 0.3030%. Finally, by changing the parameter gamma to a spatial heterogeneity parameter gamma (x), we have achieved the reproduction of natural biological surface patterns through the Projected Gradient Method.
引用
收藏
页码:21707 / 21733
页数:27
相关论文
共 50 条
  • [1] Optimal control and parameter identification of a reaction–diffusion network propagation model
    Linhe Zhu
    Tianyu Yuan
    [J]. Nonlinear Dynamics, 2023, 111 : 21707 - 21733
  • [2] Parameter identification method of a reaction-diffusion network information propagation system based on optimization theory
    Ding, Yi
    Zhu, Linhe
    [J]. JOURNAL OF PARALLEL AND DISTRIBUTED COMPUTING, 2024, 190
  • [3] Spatiotemporal dynamics analysis and optimal control method for an SI reaction-diffusion propagation model
    Zhu, Linhe
    Huang, Xiaoyuan
    Liu, Ying
    Zhang, Zhengdi
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 493 (02)
  • [4] Parameter identification of a reaction-diffusion predator-prey system based on optimal control theory
    Miao, Li
    Zhu, Linhe
    [J]. APPLIED MATHEMATICAL MODELLING, 2024, 133 : 1 - 19
  • [5] Pattern dynamics analysis of a reaction-diffusion network propagation model
    Zhu, Linhe
    Chen, Siyi
    Shen, Shuling
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2024, 220 : 425 - 444
  • [6] Optimal control of dengue vector based on a reaction-diffusion model?
    Li, Yazhi
    Wang, Yan
    Liu, Lili
    [J]. MATHEMATICS AND COMPUTERS IN SIMULATION, 2023, 203 : 250 - 270
  • [7] Pattern study and parameter identification of a reaction-diffusion rumor propagation system with time delay
    Zhu, Linhe
    Tang, Yuxuan
    Shen, Shuling
    [J]. CHAOS SOLITONS & FRACTALS, 2023, 166
  • [8] Dynamic analysis and optimal control of a reaction-diffusion rumor propagation model in multi-lingual environments
    Xia, Yang
    Jiang, Haijun
    Yu, Zhiyong
    Yu, Shuzhen
    Luo, Xupeng
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2023, 521 (02)
  • [9] Complex dynamic analysis of a reaction-diffusion network information propagation model with non-smooth control
    Ma, Xuerong
    Shen, Shuling
    Zhu, Linhe
    [J]. INFORMATION SCIENCES, 2023, 622 : 1141 - 1161
  • [10] Optimal control of pattern formations for an SIR reaction-diffusion epidemic model
    Chang, Lili
    Gao, Shupeng
    Wang, Zhen
    [J]. JOURNAL OF THEORETICAL BIOLOGY, 2022, 536