Tropical cyclone tornadoes (TCTORs) are a hazard to life and property during landfalling tropical cyclones (TCs). The threat is often spread over a wide area within the TC envelope and must be continually evaluated as the TC moves inland and dissipates. To anticipate the risk of TCTORs, forecasters may use high-resolution, rapidly updating model analyses and short-range forecasts such as the Rapid Refresh (RAP) and High-Resolution Rapid Refresh (HRRR), and an ingredients-based approach similar to that used for forecasting continental midlatitude tornadoes. Though RAP and HRRR errors have been identified in typical midlatitude convective environments, this study evaluates the perfor-mance of the RAP and the HRRR within the TC envelope, with particular attention given to sounding-derived parameters previously identified as useful for TCTOR forecasting. A sample of 1730 observed upper-air soundings is sourced from 13 TCs that made landfall along the U.S. coastline between 2017 and 2019. The observed soundings are paired with their cor-responding model gridpoint soundings from the RAP analysis, RAP 12-h forecast, and HRRR 12-h forecast. Model errors are calculated for both the raw sounding variables of temperature, dewpoint, and wind speed, as well as for the selected sounding-derived parameters. Results show a moist bias that worsens with height across all model runs. There are also statisti-cally significant underpredictions in stability-related parameters such as convective available potential energy (CAPE) and kinematic parameters such as vertical wind shear.