Microstructure characterization and mechanical performance of laser powder bed fusion processed AlMgScZr alloy: Effect of heat treatment

被引:6
|
作者
Li, Xiang [1 ,2 ]
Liu, Yunzhong [1 ,2 ]
机构
[1] South China Univ Technol, Guangdong Prov Key Lab Proc & Forming Adv Met Mat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Natl Engn Res Ctr Near net shape Forming Met Mat, Guangzhou 510640, Peoples R China
关键词
Laser powder bed fusion; Additive manufacturing; AlMgScZr; Heat treatment; Microstructure; Mechanical properties; STRENGTHENING MECHANISMS; PRECIPITATION KINETICS; GRAIN-REFINEMENT; ALUMINUM-ALLOYS; SC; SCANDIUM; PARTICLES; TEXTURE; AMBIENT;
D O I
10.1016/j.msea.2022.144501
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Laser powder bed fusion (LPBF) of aluminum alloys produces a particularly unique microstructure compared to conventional casting and forging products. Generally, the heat treatments employed in traditional fabrication techniques may not be suitable for LPBF. To mitigate this dilemma, this work systematically investigated the hardening behavior of various heat-treated temperatures and hold durations carried out on LPBF fabricated AlMgScZr alloy. The microstructure and mechanical performance in the as-built and heat-treated conditions were also compared and discussed. Results demonstrate that the resultant static mechanical performance is exceptionally excellent with ultimate tensile strength (UTS) exceeding 550 MPa along with a sound fracture elongation even after heat treatment. These outstanding properties are strongly related to the fine equiaxed grains microstructure and a high fraction of secondary Al-3(Sc, Zr) precipitations. Importantly, these fine equiaxed grains almost maintained ungrowth even after heat treatment owing to the pinning effect of secondary Al-3(Sc, Zr) precipitations. This AlMgScZr alloy demonstrates high tensile strength and appreciable ductility due to fine grain strengthening, solid solution strengthening and secondary phase strengthening. As such, by the synergetic effects of Sc and Zr microalloying and optimal heat treatment conditions, the high strength and decent ductility of LPBF fabricated AlMgScZr alloy can be achieved, extending its further application in aerospace industry. This strategy can also be employed to other LPBF fabricated engineering materials, providing a foundation for expanding industrial applications of LPBF fabricated parts.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] Influence of SiC particles on the microstructure and mechanical behaviors of AlMgScZr alloy processed by laser powder bed fusion
    Kang, Chennuo
    Xiong, Xuntao
    Wang, Xiaoming
    Feng, Zhe
    Fan, Wei
    Wang, Yongxia
    Dang, Mingji
    Tan, Hua
    Zhang, Fengying
    Lin, Xin
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2024, 910
  • [2] Porosity formation mechanisms, microstructure evolution and mechanical performance of AlMgScZr alloy fabricated by laser powder bed fusion: Effect of hatch distance
    Li, Xiang
    Liu, Yunzhong
    Tan, Chaolin
    Zou, Yongming
    JOURNAL OF MANUFACTURING PROCESSES, 2023, 94 : 107 - 119
  • [3] Effect of heat treatment and hot isostatic pressing on the microstructure and mechanical properties of Inconel 625 alloy processed by laser powder bed fusion
    Kreitcberg, Alena
    Brailovski, Vladimir
    Turenne, Sylvain
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2017, 689 : 1 - 10
  • [4] Influence of hatch distance on processing, microstructure and mechanical properties of AlMgScZr alloy fabricated by laser powder bed fusion
    Li, Xiang
    Liu, Yunzhong
    Zhou, Zhiguang
    JOURNAL OF MANUFACTURING PROCESSES, 2022, 81 : 78 - 91
  • [5] Effect of heat treatment on microstructure and mechanical characteristics of laser powder bed fusion (LPBF) produced CuCrZr alloy
    Jeyaprakash, N.
    Alnaser, Ibrahim A.
    Cheng, Yanhai
    Karuppasamy, Sundara Subramanian
    TRIBOLOGY INTERNATIONAL, 2024, 197
  • [6] High Temperature Mechanical Properties of AlMgScZr Alloy Produced by Laser Powder Bed Fusion
    Abrami, Maria Beatrice
    Tocci, Marialaura
    Gelfi, Marcello
    Pola, Annalisa
    23 EUROPEAN CONFERENCE ON FRACTURE, ECF23, 2022, 42 : 838 - 846
  • [7] Effect of heat treatment on the microstructure and mechanical properties of an Al-5Mg2Si-2Mg alloy processed by laser powder bed fusion
    Wang, Jianying
    Yang, Feipeng
    Yang, Hailin
    Zhang, Lijun
    Zhang, Yingying
    Liu, Zhilin
    Ji, Shouxun
    JOURNAL OF ALLOYS AND COMPOUNDS, 2022, 920
  • [8] Mechanical behavior and microstructure evolution of Al-Cu-Mg alloy produced by laser powder bed fusion: Effect of heat treatment
    Qi, Yang
    Zhang, Hu
    Zhu, Junjie
    Nie, Xiaojia
    Hu, Zhiheng
    Zhu, Haihong
    Zeng, Xiaoyan
    MATERIALS CHARACTERIZATION, 2020, 165
  • [9] Effect of Vacuum Heat Treatment on the Microstructure of a Laser Powder-Bed Fusion-Fabricated NiTa Alloy
    Wu, Cheng-Tse
    Bussmann, Markus
    Chattopadhyay, Kinnor
    METALS, 2022, 12 (05)
  • [10] Mechanical Behavior of Laser Powder Bed Fusion Processed Inconel 625 Alloy
    K. S. N. Satish Idury
    V. Chakkravarthy
    R. L. Narayan
    Transactions of the Indian National Academy of Engineering, 2021, 6 (4) : 975 - 990