Fractional Heat Conduction with Heat Absorption in a Solid with a Spherical Cavity under Time-Harmonic Heat Flux

被引:1
|
作者
Povstenko, Yuriy [1 ]
Kyrylych, Tamara [1 ]
Wozna-Szczesniak, Bozena [1 ]
Yatsko, Andrzej [2 ]
机构
[1] Jan Dlugosz Univ Czestochowa, Fac Sci & Technol, Dept Math & Comp Sci, Al Armii Krajowej 13-15, PL-42200 Czestochowa, Poland
[2] Koszalin Univ Technol, Fac Civil Engn Environm & Geodes Sci, Dept Math, Sniadeckich 2, PL-75453 Koszalin, Poland
来源
APPLIED SCIENCES-BASEL | 2024年 / 14卷 / 04期
关键词
heat conduction; fractional calculus; long-tail" memory; Riemann-Liouville fractional derivative; Caputo fractional derivative; generalized Fourier law; time-harmonic impact; Mittag-Leffler function; PHASE-LAG MODEL; THERMOELASTIC INTERACTIONS; NUMERICAL-SIMULATION; BIOHEAT EQUATION; UNBOUNDED BODY; DIFFUSION; TISSUES;
D O I
10.3390/app14041627
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The central-symmetric time-fractional heat conduction equation with heat absorption is investigated in a solid with a spherical hole under time-harmonic heat flux at the boundary. The problem is solved using the auxiliary function, for which the Robin-type boundary condition with a prescribed value of a linear combination of a function and its normal derivative is fulfilled. The Laplace and Fourier sine-cosine integral transformations are employed. Graphical representations of numerical simulation results are given for typical values of the parameters.
引用
收藏
页数:16
相关论文
共 50 条