Persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation

被引:4
|
作者
Zhang, Huiyang [1 ]
Xia, Yonghui [1 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Sine-Gordon equation; Traveling wave solution; Melnikov function; TRAVELING-WAVES; SOLITONS; BIFURCATIONS; DIFFUSION; EXISTENCE; DYNAMICS; PERIOD;
D O I
10.1016/j.aml.2023.108616
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Based on the geometric singular perturbation theory and the Melnikov method, we study the persistence of kink and anti-kink wave solutions for the perturbed double sine-Gordon equation. The explicit expression of the Melnikov function is given. Moreover, the monotonicity of the period function for unperturbed double sine-Gordon equation is investigated.(c) 2023 Elsevier Ltd. All rights reserved.
引用
下载
收藏
页数:8
相关论文
共 50 条
  • [1] Unstable kink and anti-kink profile for the sine-Gordon equation on a Y-junction graph
    Angulo Pava, Jaime
    Plaza, Ramon G.
    MATHEMATISCHE ZEITSCHRIFT, 2022, 300 (03) : 2885 - 2915
  • [2] Instability theory of kink and anti-kink profiles for the sine-Gordon equation on Josephson tricrystal boundaries
    Pava, Jaime Angulo
    Plaza, Ramon G.
    PHYSICA D-NONLINEAR PHENOMENA, 2021, 427 (427)
  • [3] MULTIDIMENSIONAL KINK SOLUTIONS OF THE DOUBLE SINE-GORDON EQUATION
    BURT, PB
    LETTERE AL NUOVO CIMENTO, 1980, 28 (03): : 104 - 106
  • [4] KINK ASYMPTOTICS OF THE PERTURBED SINE-GORDON EQUATION
    KISELEV, OM
    THEORETICAL AND MATHEMATICAL PHYSICS, 1992, 93 (01) : 1106 - 1111
  • [5] Influence of dislocations on kink solutions of the double sine-Gordon equation
    S. P. Popov
    Computational Mathematics and Mathematical Physics, 2013, 53 : 1891 - 1899
  • [6] Influence of dislocations on kink solutions of the double sine-Gordon equation
    Popov, S. P.
    COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2013, 53 (12) : 1891 - 1899
  • [7] On kink-dynamics of the perturbed sine-Gordon equation
    Maksimov, AG
    Pedersen, NF
    Christiansen, PL
    Molkov, JI
    Nekorkin, VI
    WAVE MOTION, 1996, 23 (02) : 203 - 213
  • [8] The solitary wave, kink and anti-kink solutions coexist at the same speed in a perturbed nonlinear Schrodinger equation
    Zheng, Hang
    Xia, Yonghui
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2023, 56 (15)
  • [9] ON KINK AND ANTI-KINK WAVE SOLUTIONS OF SCHRODINGER EQUATION WITH DISTRIBUTED DELAY
    Xu, Chuanhai
    Wu, Yuhai
    Tian, Lixin
    Guo, Boling
    JOURNAL OF APPLIED ANALYSIS AND COMPUTATION, 2018, 8 (05): : 1385 - 1395
  • [10] Evolution of randomly perturbed sine-Gordon kink
    Abdullaev, FK
    Abdumalikov, AA
    PHYSICA D, 1998, 113 (2-4): : 115 - 122