Disorder-dependent slopes of the upper critical field in nodal and nodeless superconductors

被引:3
|
作者
Kogan, V. G. [1 ]
Prozorov, R. [1 ,2 ]
机构
[1] Ames Natl Lab, Ames, IA 50011 USA
[2] Iowa State Univ, Dept Phys Astron, Ames, IA 50011 USA
关键词
TEMPERATURE;
D O I
10.1103/PhysRevB.108.064502
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the slopes of the upper critical field S = delta H-c2 /partial derivative T at the superconducting transition temperature T-c in anisotropic superconductors with transport (nonmagnetic) scattering employing the Ginzburg-Landau theory, developed for this case by Pokrovsky and Pokrovsky [Phys. Rev. B 54, 13275 (1996)]. We find unexpected behavior of the slopes for a d-wave superconductor and, in a more general case, of materials with line nodes in the order parameter. Specifically, the presence of line nodes causes S to decrease with increasing nonmagnetic scattering parameter P = (h) over bar /2 pi T-c0 tau (T-c0 is for the clean limit, tau is the scattering time), unlike the nodeless case where the slope increases. In a pure d-wave case, the slope changes from decreasing to increasing when the scattering parameter approaches P approximate to 0.91 P-crit, where P-crit approximate to 0.28, at which T-c -> 0, which implies the existence of a "gapless" state in d-wave superconductors with transport scattering in the interval, 0.91 P-crit < P < P-crit. Furthermore, we consider the mixed (s + d)-wave order parameter with four nodes on a cylindrical Fermi surface when the d part is dominant, or no nodes at all when the s-wave phase dominates. We find that the presence of nodes causes the slope S(P) to decrease initially with increasing P, whereas in the nodeless state, S(P) monotonically increases. Therefore relatively straightforward measurements of the disorder dependence of the slope of H-c2 at T-c can help distinguish between nodal and nodeless order parameters, which is particularly useful for quickly assessing newly discovered superconductors.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Upper critical field in layered superconductors
    Mineev, VP
    JOURNAL OF THE PHYSICAL SOCIETY OF JAPAN, 2000, 69 (10) : 3371 - 3377
  • [2] Upper critical field in noncentrosymmetric superconductors
    Samokhin, K. V.
    PHYSICAL REVIEW B, 2008, 78 (22)
  • [3] Upper critical field of borocarbide superconductors
    Lan, MD
    Chang, JC
    Lu, KT
    Lee, CY
    Shih, HY
    Jeng, GY
    IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY, 2001, 11 (01) : 3607 - 3610
  • [4] UPPER CRITICAL-FIELD OF UNCONVENTIONAL SUPERCONDUCTORS
    SUN, Y
    MAKI, K
    PHYSICAL REVIEW B, 1993, 47 (14): : 9108 - 9111
  • [5] Upper critical field for cobalt oxide superconductors
    Maska, MM
    Mierzejewski, M
    New Challenges in Superconductivity: Experimental Advances and Emerging Theories, 2005, 183 : 231 - 234
  • [6] UPPER CRITICAL-FIELD OF BIPOLARON SUPERCONDUCTORS
    ALEKSANDROV, AS
    SAMARCHENKO, DA
    ZHURNAL EKSPERIMENTALNOI I TEORETICHESKOI FIZIKI, 1991, 99 (02): : 574 - 588
  • [7] UPPER LIMIT FOR CRITICAL FIELD IN HARD SUPERCONDUCTORS
    CLOGSTON, AM
    PHYSICAL REVIEW LETTERS, 1962, 9 (06) : 266 - &
  • [8] Upper critical field of heavy fermion superconductors
    Brison, JP
    Buzdin, A
    Glemot, L
    Thomas, F
    Flouquet, J
    PHYSICA B, 1997, 230 : 406 - 408
  • [9] ON THE UPPER CRITICAL-FIELD OF ANISOTROPIC SUPERCONDUCTORS
    LANGMANN, E
    PHYSICA C-SUPERCONDUCTIVITY AND ITS APPLICATIONS, 1991, 173 (5-6): : 347 - 356
  • [10] Upper critical field for cobalt oxide superconductors
    Mierzejewski, M
    Maska, M
    Andrzejewski, B
    ACTA PHYSICA POLONICA A, 2004, 106 (05) : 603 - 608