Synergetic surface modification of 3D braided carbon fiber-reinforced composites for enhancing mechanical strength

被引:8
|
作者
Li, Jinyu [1 ,2 ]
Yuan, Lin [1 ,2 ,4 ]
Wu, Zihang [3 ]
Zhang, Tao [3 ]
Wang, Chi [3 ]
Li, Miao [3 ]
Shan, Debin [1 ,2 ]
Guo, Bin [1 ,2 ]
机构
[1] Natl Key Lab Precis Hot Proc Met, Harbin 150001, Heilongjiang, Peoples R China
[2] Harbin Inst Technol, Sch Mat Sci & Engn, Harbin 150001, Heilongjiang, Peoples R China
[3] Harbin Inst Technol Weihai, Sch Mat Sci & Engn, Weihai 264209, Shandong, Peoples R China
[4] POB 435,92 West Dazhi St, Harbin 150001, Heilongjiang, Peoples R China
关键词
Synergetic treatment; 3D braided carbon fiber-reinforced composites; Wettability; Interfacial adhesion; Mechanical properties; INTERFACIAL SHEAR-STRENGTH; EPOXY; ADHESION; FABRICATION; PRESSURE; MATRIX;
D O I
10.1016/j.apsusc.2023.158189
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Excellent interfacial bonding contributes to the reduction of internal defects in composites for enhancing the mechanical properties of the 3D braided carbon fiber reinforced composites. In this paper, the effects of plasma and strong acid treatment on the surface morphology, chemical composition, and surface free energy of original carbon fiber braid (CFB) were investigated in detail to reveal the mechanism of synergetic enhancement of surface wettability of carbon fiber by plasma and strong acid. The results showed that the synergetic effect of plasma and strong acid produced significantly improved the resin/fiber interfacial bonding. The interfacial shear strength (IFSS) of the carbon fiber braided reinforced composites (CFBC) treated with the synergetic treatment was 64.6% higher than that of the untreated fiber reinforced composites. The improved interfacial properties increase the polar functional groups on the fiber surface to promote the formation of mechanical interlocking caused by Cassie-Baxter(CB) and Wenzel(WZ) leaps of liquid resin on the fiber surface, and this was verified by molecular dynamics(MD) simulations of carbon fiber-resin interfacial wetting. The simple and effective synergetic reinforcement strategy proposed in this paper can effectively regulate the interfacial bonding and is applicable to the optimal design of original carbon fiber braided reinforced composites.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] Surface Modification of Carbon Fiber for Enhancing the Mechanical Strength of Composites
    Tokonami, Ryoma
    Aoki, Katsuhito
    Goto, Teruya
    Takahashi, Tatsuhiro
    POLYMERS, 2022, 14 (19)
  • [2] Study on the Preparation of 3D Braided Carbon Fiber Reinforced Magnesium Matrix Composites
    Zhang, Ping
    Deng, Weinan
    PROCEEDINGS OF THE 2018 3RD INTERNATIONAL WORKSHOP ON MATERIALS ENGINEERING AND COMPUTER SCIENCES (IWMECS 2018), 2018, 78 : 83 - 88
  • [3] Effects of functionalization and annealing in enhancing the interfacial bonding and mechanical properties of 3D printed fiber-reinforced composites
    Papon, Easir Arafat
    Haque, Anwarul
    Spear, Scott K.
    MATERIALS TODAY COMMUNICATIONS, 2020, 25
  • [4] Catecholamine polymers as surface modifiers for enhancing interfacial strength of fiber-reinforced composites
    Lee, Wonoh
    Lee, Jea Uk
    Byun, Joon-Hyung
    COMPOSITES SCIENCE AND TECHNOLOGY, 2015, 110 : 53 - 61
  • [5] Experimental study of mechanical properties of 3D braided aramid/carbon fiber composites
    Liang, Junhao
    Wang, Longyue
    Liu, Baoqi
    He, Xinhai
    Guo, Jinlei
    Zhang, Ting
    Li, Xiyi
    Ma, Yuqin
    Tian, Wenlong
    JOURNAL OF THE TEXTILE INSTITUTE, 2023, 115 (11) : 2224 - 2232
  • [6] Fracture behavior of 3D printed carbon fiber-reinforced polymer composites
    Yavas, Denizhan
    Zhang, Ziyang
    Liu, Qingyang
    Wu, Dazhong
    COMPOSITES SCIENCE AND TECHNOLOGY, 2021, 208
  • [7] ENHANCING CARBON FIBER REINFORCED POLYMER COMPOSITES BY 3D PRINTING OPTIMIZATION
    Liu, Xingyu
    Billings, Christopher
    Sherwood, Benjamin
    Hall, Joshua
    Nimmo, Caylin
    Liu, Yingtao
    PROCEEDINGS OF ASME 2024 AEROSPACE STRUCTURES, STRUCTURAL DYNAMICS, AND MATERIALS CONFERENCE, SSDM2024, 2024,
  • [8] Plasma treatment and biomimetic deposition of the 3D braided carbon fiber reinforced PEEK composites
    He, Fang
    Li, Hao
    Wan, Yizao
    Huang, Yuan
    Mao, Lihe
    Fuhe Cailiao Xuebao/Acta Materiae Compositae Sinica, 2011, 28 (02): : 77 - 81
  • [9] Maximizing the Performance of 3D Printed Fiber-Reinforced Composites
    Kabir, S. M. Fijul
    Mathur, Kavita
    Seyam, Abdel-Fattah M.
    JOURNAL OF COMPOSITES SCIENCE, 2021, 5 (05):
  • [10] Role of surface treatment of carbon fibers on mechanical properties of carbon fiber-reinforced composites
    Sharma, SP
    Lakkad, SC
    Gaunkar, GVP
    SURFACE ENGINEERING IN MATERIALS SCIENCE III, 2005, : 61 - 74