Pure Number Discrete Fractional Complex Hadamard Transform

被引:1
|
作者
Fan, Zi-Chen [1 ]
Li, Di [1 ]
Rahardja, Susanto [1 ,2 ]
机构
[1] Northwestern Polytech Univ, Sch Marine Sci & Technol, Xian 710072, Peoples R China
[2] Singapore Inst Technol, Singapore 138683, Singapore
关键词
Pure number discrete fractional complex Hadamard transform; self-Kronecker product; fast algorithm; multiplication reduction; FAST ALGORITHM;
D O I
10.1109/LSP.2023.3305193
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter introduces a novel discrete fractional transform termed as pure number discrete fractional complex Hadamard transform (PN-FCHT). The proposed PN-FCHT offers three advantages over the traditional discrete fractional Hadamard transform (FHT). Firstly, the higher-order PN-FCHT matrix exhibits the Self-Kronecker product structure, which allows for the recursive generation from the $2\times 2$ core PN-FCHT matrix. Secondly, it possesses two important properties for computation, i.e. pure number property. Lastly, compared to existing state-of-the-art fast FHT algorithms, the PN-FCHT can reduce the transform multiplication computational complexity by up to 80% and this results in a more efficient hardware implementation.
引用
收藏
页码:1087 / 1091
页数:5
相关论文
共 50 条
  • [1] Pure Number Discrete Fractional Complex Hadamard Transform
    Fan, Zi-Chen
    Li, Di
    Rahardja, Susanto
    IEEE SIGNAL PROCESSING LETTERS, 2023, 30 : 1087 - 1091
  • [2] Discrete fractional Hadamard transform
    Pei, Soo-Chang
    Yeh, Min-Hung
    Proceedings - IEEE International Symposium on Circuits and Systems, 1999, 3
  • [3] Discrete fractional Hadamard transform
    Pei, SC
    Yeh, MH
    ISCAS '99: PROCEEDINGS OF THE 1999 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOL 3: ANALOG AND DIGITAL SIGNAL PROCESSING, 1999, : 179 - 182
  • [4] Fast algorithm for discrete fractional Hadamard transform
    Aleksandr Cariow
    Dorota Majorkowska-Mech
    Numerical Algorithms, 2015, 68 : 585 - 600
  • [5] Fast algorithm for discrete fractional Hadamard transform
    Cariow, Aleksandr
    Majorkowska-Mech, Dorota
    NUMERICAL ALGORITHMS, 2015, 68 (03) : 585 - 600
  • [6] Efficient Computation for Discrete Fractional Hadamard Transform
    Fan, Zi-Chen
    Li, Di
    Rahardja, Susanto
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2024, : 4698 - 4706
  • [7] The multiple-parameter discrete fractional Hadamard transform
    Tao, Ran
    Lang, Jun
    Wang, Yue
    OPTICS COMMUNICATIONS, 2009, 282 (08) : 1531 - 1535
  • [8] A New Fast Algorithm for Discrete Fractional Hadamard Transform
    Cariow, Aleksandr
    Majorkowska-Mech, Dorota
    Paplinski, Janusz P.
    Cariowa, Galina
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (07) : 2584 - 2592
  • [9] Discrete Pseudo-Fractional Hadamard Transform and its Fast Algorithm
    Majorkowska-Mech, Dorota
    Cariow, Aleksandr
    IEEE SIGNAL PROCESSING LETTERS, 2020, 27 : 1195 - 1199
  • [10] Eigenvector and fractionalization of discrete hadamard transform
    Tseng, C. C.
    2007 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS, VOLS 1-11, 2007, : 2307 - 2310