Performance improvement of air liquefaction processes for liquid air energy storage (LAES) using magnetic refrigeration system

被引:12
|
作者
Ansarinasab, Hojat [1 ]
Fatimah, Manal [1 ]
Khojasteh-Salkuyeh, Yaser [1 ]
机构
[1] Concordia Univ, Dept Chem & Mat Engn, Montreal, PQ, Canada
关键词
Magnetic refrigeration; Magnetocaloric effect; Liquid air energy storage; Small-scale LAES; Air liquefaction processes; THERMODYNAMIC ANALYSIS; HYDROGEN; EXERGY; DESIGN; PLANT; OPTIMIZATION; RECOVERY; HEAT; COST; COLD;
D O I
10.1016/j.est.2023.107304
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
It is essential to shift towards renewable energy for environmental concerns. Liquid air energy storage is an attractive option to store this energy in terms of energy savings, grid balancing and large-scale energy system with no geographical constraints. However, it has a low round trip efficiency, to which the energy intensity of air liquefaction is a major contributor. This study proposes novel configurations employing magnetic refrigeration pre-cooling for air liquefaction cycles (Linde-Hampson, Claude and Kapitza). The conventional and new lique-faction schemes are modeled and simulated on Aspen Hysys. The proposed schemes for the liquefaction step of the LAES process are assessed thermodynamically and economically based on specific energy consumption (SEC), exergy efficiency and levelized cost of product (LCOP). The results show that SEC for Linde-Hampson, Claude and Kapitza with AMR pre-cooling reduces by 11.20 %, 10.96 % and 7.24 %, respectively, compared with conven-tional air liquefaction cycles without precooling. Also, exergy efficiency for cycles with AMR pre-cooling in-creases by 1.03 %, 3.13 % and 2.12 %, respectively. It is found that Kapitza-AMR process gives the lowest value for LCOP of 7.62 US$/kgLAir as compared to 8.61 US$/kgLAir for the LH-AMR and 8.03 US$/kgLAir for the Claude-AMR process. A sensitivity analysis is also performed to study the effect of varying process parameters on per-formance of the active magnetic regenerator (AMR) pre-cooling section.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Conceptual design of LNG regasification process using liquid air energy storage (LAES) and LNG production process using magnetic refrigeration system
    Ansarinasab, Hojat
    Hajabdollahi, Hassan
    Fatimah, Manal
    SUSTAINABLE ENERGY TECHNOLOGIES AND ASSESSMENTS, 2021, 46
  • [2] A novel integrated system of hydrogen liquefaction process and liquid air energy storage (LAES): Energy, exergy, and economic analysis
    Yang, Yan
    Tong, Lige
    Liu, Yuxin
    Guo, Wei
    Wang, Li
    Qiu, Yinan
    Ding, Yulong
    ENERGY CONVERSION AND MANAGEMENT, 2023, 280
  • [3] Liquid Air Energy Storage with LNG cold recovery for air liquefaction improvement
    Peng, Xiaodong
    She, Xiaohui
    Nie, Binjian
    Li, Chuan
    Li, Yongliang
    Ding, Yulong
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4759 - 4764
  • [4] Liquid Air Energy Storage System (LAES) Assisted by Cryogenic Air Rankine Cycle (ARC)
    Pinto Menezes, Mylena Vieira
    Vilasboas, Icaro Figueiredo
    Mendes da Silva, Julio Augusto
    ENERGIES, 2022, 15 (08)
  • [5] Comprehensive Review of Liquid Air Energy Storage (LAES) Technologies
    Rabi, Ayah Marwan
    Radulovic, Jovana
    Buick, James M.
    ENERGIES, 2023, 16 (17)
  • [6] Experimental investigation of tank stratification in liquid air energy storage (LAES) system
    Heo, Jin Young
    Park, Jung Hwan
    Lee, Jeong Ik
    APPLIED THERMAL ENGINEERING, 2022, 202
  • [7] Improvement potential detection of integrated biomethane liquefaction and liquid air energy storage system
    Rehman, Ali
    Zhang, Bo
    Qyyum, Muhammad Abdul
    Zhuqiang, Yang
    Haider, Junaid
    JOURNAL OF ENERGY STORAGE, 2023, 66
  • [8] Optimization of Liquid Air Energy Storage (LAES) using a Genetic Algorithm (GA)
    Liu, Zhongxuan
    Yu, Haoshui
    Gundersen, Truls
    30TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PTS A-C, 2020, 48 : 967 - 972
  • [9] Liquid Air Energy Storage System: Commercial Demonstration Using LNG Refrigeration
    Shiote, Hidenao
    Journal of the Institute of Electrical Engineers of Japan, 2025, 145 (01): : 20 - 23
  • [10] Investigation of a liquid air energy storage (LAES) system with different cryogenic heat storage devices
    Huettermann, Lars
    Span, Roland
    Maas, Pascal
    Scherer, Viktor
    INNOVATIVE SOLUTIONS FOR ENERGY TRANSITIONS, 2019, 158 : 4410 - 4415