Experimental investigations on the heat transfer characteristic of impingement/swirl cooling structures inside turbine blade leading edge

被引:7
|
作者
Han, Feng [1 ,2 ]
Wang, Lingyang [1 ]
Zhang, Shuhao [1 ]
Mao, Junkui [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Energy & Power Engn, Nanjing 210016, Jiangsu, Peoples R China
[2] Nanjing Univ Aeronaut & Astronaut, Integrated Energy Inst, Nanjing 210016, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Leading edge; Impingement cooling; Swirl cooling; Turbine blade; Transient TLC; OPTIMAL-DESIGN; BLOWING RATIO; CHAMBERS;
D O I
10.1016/j.icheatmasstransfer.2023.107197
中图分类号
O414.1 [热力学];
学科分类号
摘要
Experimental investigations were performed to study the heat transfer characteristics of impingement/swirl cooling structures inside a turbine leading edge (LE) as measured using the transient thermochromic liquid crystal (TLC) technique. The considered Reynolds numbers (Re) were 10,000, 20,000, and 30,000, and the effects of Re and the ratio of the impingement cooling hole offset distance to the impingement cooling hole diameter (e/d) on the heat transfer performance of the impingement/swirl cooling structures inside the blade LE were analyzed. The effects of the coolant outflow mode were also considered. The results show that the heat transfer intensity of the high heat transfer region of impingement/swirl cooling structures increases with Re. The e/d on the local Nusselt number (Nu) distributions for the two shooting areas are similar under different Re conditions. Changes in e/d significantly influence the heat transfer characteristics. As e/d increases from -1.5 to 1.5, the heat transfer effect and thermal uniformity of the LE inner wall chamber improved. Comparative analyses with the experimental results of the LE model without film cooling holes show that the thermal uniformity of the LE model significantly improves when including film cooling holes.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Numerical investigations on flow and heat transfer of swirl and impingement composite cooling structures of turbine blade leading edge
    Wu, Fan
    Li, Liang
    Wang, Jiefeng
    Fan, Xiaojun
    Du, Changhe
    [J]. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2019, 144
  • [2] Experimental investigations on flow characteristics of impingement/swirl cooling structures inside a blade leading edge
    Han, Feng
    Wang, Lingyang
    Pu, Haotian
    Mao, Junkui
    [J]. PHYSICS OF FLUIDS, 2023, 35 (11)
  • [3] Numerical investigation on flow and heat transfer characteristics of impingement/swirl cooling structures in a turbine blade leading edge
    Han, Feng
    Wang, Lingyang
    Song, Yi
    Mao, Junkui
    [J]. INTERNATIONAL JOURNAL OF HEAT AND FLUID FLOW, 2024, 108
  • [4] Conjugate Heat Transfer Evaluation of Turbine Blade Leading-Edge Swirl and Jet Impingement Cooling With Particulate Deposition
    Yang, Xing
    Hao, Zihan
    Feng, Zhenping
    Ligrani, Phillip
    Weigand, Bernhard
    [J]. JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2024, 146 (01):
  • [5] Effect of Film Cooling Arrangement on Impingement Heat Transfer on Turbine Blade Leading Edge
    Yang, Li
    Kan, Rui
    Ren, Jing
    Jiang, Hongde
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO: TURBINE TECHNICAL CONFERENCE AND EXPOSITION, 2013, VOL 3A, 2013,
  • [6] Optimization of A Swirl with Impingement Compound Cooling Unit for A Gas Turbine Blade Leading Edge
    Fawzy, Hamza
    Zheng, Qun
    Ahmad, Naseem
    Jiang, Yuting
    [J]. ENERGIES, 2020, 13 (01)
  • [7] Numerical Study of Flow and Heat Transfer of Impingement Cooling on Model of Turbine blade Leading Edge
    Liu, Zhao
    Feng, Zhenping
    Song, Liming
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 4, PTS A AND B, 2010, : 657 - 674
  • [8] A Comparative Study on Conjugate Heat Transfer of Impingement-Film Composite Cooling and Swirl-Film Composite Cooling on Leading Edge of a Turbine Blade
    Liu, Zhao
    Jia, Zhe
    Zhang, Zhixin
    Feng, Zhenping
    [J]. Hsi-An Chiao Tung Ta Hsueh/Journal of Xi'an Jiaotong University, 2021, 55 (04): : 116 - 125
  • [9] Heat transfer experiment on film cooling of turbine blade leading edge
    Jiangsu Province Key Laboratory of Aerospace Power System, College of Energy and Power Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing
    210016, China
    不详
    610500, China
    [J]. Hangkong Dongli Xuebao, 11 (2672-2678):
  • [10] Heat transfer enhancement in combined cooling of the turbine blade leading edge
    A. V. Shchukin
    A. V. Il’inkov
    S. G. Dezider’ev
    S. N. Ivanov
    [J]. Russian Aeronautics (Iz VUZ), 2013, 56 (4) : 384 - 389