Unsteady numerical study of film cooling and heat transfer on turbine blade squealer tip with coolant jet

被引:3
|
作者
You, Yulong [1 ,2 ]
Ding, Liang [1 ,2 ]
机构
[1] AECC Commercial Aircraft Engine Co Ltd, Shanghai, Peoples R China
[2] Shanghai Engn Res Ctr Commercial Aircraft Engine, Shanghai, Peoples R China
关键词
Film cooling; heat transfer; squealer tip; Turbine blade; unsteady;
D O I
10.1080/10407782.2023.2294050
中图分类号
O414.1 [热力学];
学科分类号
摘要
Cooling performance of blade squealer tip with film holes in its cavity was investigated numerically under unsteady condition, and the effects of blowing ratio (BR), cavity depth, and tip clearance were comprehensively discussed. Results show that flow inside tip gap periodically fluctuates and affects the outlet pressure, BR, and jet characteristics of film hole, resulting in unsteady tip cooling effectiveness which could not be observed in steady condition. Average cooling effectiveness on 40-70% axial chord of tip changes the most over time. In comparison to steady result, unsteady time-average cooling effectiveness of tip and its region before 40% axial chord is lower while it is relatively higher in the region after 40% axial chord. Coolant from tip hole located in the flow area of rolling vortex is strongly mixed with rolling vortex, leading to high heat transfer coefficient downstream of that hole. Unsteady leakage flow and boundary layer flow cause stronger heat transfer on squealer rim than steady result. Small BR under unsteady condition could result in insufficient coolant supply and high temperature gas intrusion in tip holes located in 40-70% axial chord of tip. Increasing cavity depth brings longer normal jet distance and higher momentum of coolant, leading to coverage deterioration on floor with a drop in tip average cooling effectiveness of 11.6-34.7%. Large tip clearance causes the distribution of BR to become more uneven, and then more coolant flows out from trailing region, resulting in decrease tendency of average cooling efficiency with change in the range of -23.4%similar to 6.1% over time compared to base design.
引用
收藏
页数:28
相关论文
共 50 条
  • [1] Numerical investigation of unsteady film cooling on turbine blade squealer tip with pressure side coolant
    You, Yulong
    Ding, Liang
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2023, 143
  • [2] Investigations of film cooling and heat transfer on a turbine blade squealer tip
    He, Kun
    APPLIED THERMAL ENGINEERING, 2017, 110 : 630 - 647
  • [3] Heat transfer and film cooling effectiveness on the squealer tip of a turbine blade
    Park, Jun Su
    Lee, Dong Hyun
    Rhee, Dong-Ho
    Kang, Shin Hyung
    Cho, Hyung Flee
    ENERGY, 2014, 72 : 331 - 343
  • [4] Heat transfer coefficients and film cooling effectiveness on the squealer tip of a gas turbine blade
    Kwak, JS
    Han, JC
    JOURNAL OF TURBOMACHINERY-TRANSACTIONS OF THE ASME, 2003, 125 (04): : 648 - 657
  • [5] Numerical investigations on the unsteady leakage flow and heat transfer characteristics of the turbine blade squealer tip
    Jiang, Shijie
    Li, Zhigang
    Li, Jun
    Song, Liming
    JOURNAL OF THE GLOBAL POWER AND PROPULSION SOCIETY, 2023, 7 : 1 - 12
  • [6] Unsteady Investigation on Flow and Heat Transfer Characteristics of Turbine Blade Squealer Tip
    You, Yulong
    Ding, Liang
    Tan, Zhiyong
    Kung Cheng Je Wu Li Hsueh Pao/Journal of Engineering Thermophysics, 2024, 45 (03): : 836 - 844
  • [7] Numerical investigations on film cooling effectiveness and heat transfer performance of inclined film hole on the turbine blade squealer tip with plasma actuation
    Zhou, Zuohong
    Zhang, Kaiyuan
    Huang, Ming
    Li, Zhigang
    Li, Jun
    AEROSPACE SCIENCE AND TECHNOLOGY, 2024, 151
  • [8] SQUEALER TIP HEAT TRANSFER WITH FILM COOLING
    Acharya, Sumanta
    Kramer, Gregory
    Moreaux, Louis
    Nakamata, Chiyuki
    PROCEEDINGS OF THE ASME TURBO EXPO 2010, VOL 4, PTS A AND B, 2010, : 1869 - 1877
  • [9] Effect of unsteady passing wake on the aerodynamic and heat transfer performance of the turbine blade squealer tip
    Jiang, Shijie
    Li, Zhigang
    Li, Jun
    PROCEEDINGS OF THE INSTITUTION OF MECHANICAL ENGINEERS PART A-JOURNAL OF POWER AND ENERGY, 2023, 237 (01) : 19 - 32
  • [10] Investigation of Film Cooling Effectiveness on Squealer Tip of a Gas Turbine Blade
    Yang, Dianliang
    Feng, Zhenping
    Yu, Xiaobing
    PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 3, PTS A AND B, 2009, : 991 - 1000