Transcriptomic forecasting with neural ordinary differential equations

被引:5
|
作者
Erbe, Rossin [1 ,2 ,3 ]
Stein-O'Brien, Genevieve [1 ,2 ,4 ,5 ,6 ]
Fertig, Elana J. [2 ,3 ,7 ,8 ,9 ]
机构
[1] Johns Hopkins Univ, Sch Med, Dept Genet Med, Baltimore, MD 21218 USA
[2] Johns Hopkins Univ, Johns Hopkins Convergence Inst, Sch Med, Baltimore, MD 21218 USA
[3] Johns Hopkins Univ, Sidney Kimmel Comprehens Canc Ctr, Dept Oncol, Baltimore, MD 21218 USA
[4] Johns Hopkins Univ, Sch Med, Dept Neurosci, Baltimore, MD 21218 USA
[5] Kavli Neurodiscovery Inst, Baltimore, MD 21218 USA
[6] Johns Hopkins Univ, Single Cell Training & Anal Ctr, Sch Med, Baltimore, MD 21218 USA
[7] Johns Hopkins Univ, Johns Hopkins Bloomberg Kimmel Inst Immunotherapy, Sch Med, Baltimore, MD 21218 USA
[8] Johns Hopkins Univ, Dept Biomed Engn, Baltimore, MD 21218 USA
[9] Johns Hopkins Univ, Dept Appl Math & Stat, Baltimore, MD 21218 USA
来源
PATTERNS | 2023年 / 4卷 / 08期
关键词
artificial intelligence; cellular phenotypes; DSML 2: Proof-of-concept: Data science output has been formulated; implemented; and tested for one domain/problem; machine learning; neural ODE; predictive biology; single-cell RNA-seq; temporalomics;
D O I
10.1016/j.patter.2023.100793
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Single-cell transcriptomics technologies can uncover changes in the molecular states that underlie cellular phenotypes. However, understanding the dynamic cellular processes requires extending from inferring trajectories from snapshots of cellular states to estimating temporal changes in cellular gene expression. To address this challenge, we have developed a neural ordinary differential-equation-based method, RNAForecaster, for predicting gene expression states in single cells for multiple future time steps in an embedding-independent manner. We demonstrate that RNAForecaster can accurately predict future expres-sion states in simulated single-cell transcriptomic data with cellular tracking over time. We then show that by using metabolic labeling single-cell RNA sequencing (scRNA-seq) data from constitutively dividing cells, RNAForecaster accurately recapitulates many of the expected changes in gene expression during progres-sion through the cell cycle over a 3-day period. Thus, RNAForecaster enables short-term estimation of future expression states in biological systems from high-throughput datasets with temporal information.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Graph neural ordinary differential equations for epidemic forecasting
    Xiong, Yanqin
    Wang, Huandong
    Liu, Guanghua
    Li, Yong
    Jiang, Tao
    CCF TRANSACTIONS ON PERVASIVE COMPUTING AND INTERACTION, 2024, 6 (03) : 281 - 295
  • [2] Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
    Xing Chen
    Flavio Abreu Araujo
    Mathieu Riou
    Jacob Torrejon
    Dafiné Ravelosona
    Wang Kang
    Weisheng Zhao
    Julie Grollier
    Damien Querlioz
    Nature Communications, 13
  • [3] Forecasting the outcome of spintronic experiments with Neural Ordinary Differential Equations
    Chen, Xing
    Araujo, Flavio Abreu
    Riou, Mathieu
    Torrejon, Jacob
    Ravelosona, Dafine
    Kang, Wang
    Zhao, Weisheng
    Grollier, Julie
    Querlioz, Damien
    NATURE COMMUNICATIONS, 2022, 13 (01)
  • [4] Neural Ordinary Differential Equations for Forecasting and Accelerating Photon Correlation Spectroscopy
    Proppe, Andrew H.
    Lee, Kin Long Kelvin
    Sun, Weiwei
    Krajewska, Chantalle J.
    Tye, Oliver
    Bawendi, Moungi G.
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2025, 16 (02): : 518 - 524
  • [5] Neural Ordinary Differential Equations
    Chen, Ricky T. Q.
    Rubanova, Yulia
    Bettencourt, Jesse
    Duvenaud, David
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [6] Optical neural ordinary differential equations
    Zhao, Yun
    Chen, Hang
    Lin, Min
    Zhang, Haiou
    Yan, Tao
    Huang, Ruqi
    Lin, Xing
    Dai, Qionghai
    OPTICS LETTERS, 2023, 48 (03) : 628 - 631
  • [7] Stiff neural ordinary differential equations
    Kim, Suyong
    Ji, Weiqi
    Deng, Sili
    Ma, Yingbo
    Rackauckas, Christopher
    CHAOS, 2021, 31 (09)
  • [8] Neural Manifold Ordinary Differential Equations
    Lou, Aaron
    Lim, Derek
    Katsman, Isay
    Huang, Leo
    Jiang, Qingxuan
    Lim, Ser-Nam
    De Sa, Christopher
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [9] Social ODE: Multi-agent Trajectory Forecasting with Neural Ordinary Differential Equations
    Wen, Song
    Wang, Hao
    Metaxas, Dimitris
    COMPUTER VISION, ECCV 2022, PT XXII, 2022, 13682 : 217 - 233
  • [10] Forecasting virus outbreaks with social media data via neural ordinary differential equations
    Matías Núñez
    Nadia L. Barreiro
    Rafael A. Barrio
    Christopher Rackauckas
    Scientific Reports, 13