Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides

被引:46
|
作者
Zhang, Kenan [1 ,2 ,3 ]
She, Yihong [4 ]
Cai, Xiangbin [5 ,6 ]
Zhao, Mei [4 ]
Liu, Zhenjing [2 ,3 ]
Ding, Changchun [7 ]
Zhang, Lijie [4 ]
Zhou, Wei [8 ]
Ma, Jianhua [8 ]
Liu, Hongwei [2 ,3 ]
Li, Lain-Jong [9 ,10 ]
Luo, Zhengtang [2 ,3 ]
Huang, Shaoming [1 ]
机构
[1] Guangdong Univ Technol, Sch Mat & Energy, Guangzhou Key Lab Low Dimens Mat & Energy Storage, Guangzhou, Peoples R China
[2] Hong Kong Univ Sci & Technol, Dept Chem & Biol Engn, William Mong Inst Nano Sci & Technol, Guangdong Hong Kong Macao Joint Lab Intelligent Mi, Hong Kong, Guangdong, Peoples R China
[3] Hong Kong Univ Sci & Technol, Chinese Natl Engn Res Ctr Tissue Restorat & Recons, Hong Kong Branch, Hong Kong, Peoples R China
[4] Wenzhou Univ, Coll Chem & Mat Engn, Key Lab Carbon Mat Zhejiang Prov, Wenzhou, Peoples R China
[5] Hong Kong Univ Sci & Technol, Dept Phys, Hong Kong, Peoples R China
[6] Hong Kong Univ Sci & Technol, Ctr Quantum Mat, Hong Kong, Peoples R China
[7] Univ Elect Sci & Technol China, Sch Phys, Dept Appl Phys, Chengdu, Peoples R China
[8] Chinese Acad Sci, Shanghai Inst Tech Phys, State Key Lab Infrared Phys, Shanghai, Peoples R China
[9] Univ Hong Kong, Dept Mech Engn, Hong Kong, Peoples R China
[10] Univ Hong Kong, Dept Phys, Hong Kong, Peoples R China
基金
中国国家自然科学基金;
关键词
INTEGRATION; SUPERCONDUCTIVITY; PROSPECTS; GRAPHENE; VAN;
D O I
10.1038/s41565-023-01326-1
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The integration of various two-dimensional (2D) materials on wafers enables a more-than-Moore approach for enriching the functionalities of devices(1-3). On the other hand, the additive growth of 2D materials to form heterostructures allows construction of materials with unconventional properties. Both may be achieved by materials transfer, but often suffer from mechanical damage or chemical contamination during the transfer. The direct growth of high-quality 2D materials generally requires high temperatures, hampering the additive growth or monolithic incorporation of different 2D materials. Here we report a general approach of growing crystalline 2D layers and their heterostructures at a temperature below 400 degrees C. Metal iodide (MI, where M = In, Cd, Cu, Co, Fe, Pb, Sn and Bi) layers are epitaxially grown on mica, MoS2 or WS2 at a low temperature, and the subsequent low-barrier-energy substitution of iodine with chalcogens enables the conversion to at least 17 different 2D crystalline metal chalcogenides. As an example, the 2D In2S3 grown on MoS2 at 280 & DEG;C exhibits high photoresponsivity comparable with that of the materials grown by conventional high-temperature vapour deposition (similar to 700-1,000 degrees C). Multiple 2D materials have also been sequentially grown on the same wafer, showing a promising solution for the monolithic integration of different high-quality 2D materials.
引用
收藏
页码:448 / +
页数:21
相关论文
共 50 条
  • [1] Epitaxial substitution of metal iodides for low-temperature growth of two-dimensional metal chalcogenides
    Kenan Zhang
    Yihong She
    Xiangbin Cai
    Mei Zhao
    Zhenjing Liu
    Changchun Ding
    Lijie Zhang
    Wei Zhou
    Jianhua Ma
    Hongwei Liu
    Lain-Jong Li
    Zhengtang Luo
    Shaoming Huang
    Nature Nanotechnology, 2023, 18 : 448 - 455
  • [2] Novel two-dimensional transition metal chalcogenides created by epitaxial growth
    Lu, Hong-Liang
    Zhang, Yu-Yang
    Lin, Xiao
    Gao, Hong-Jun
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2021, 64 (10)
  • [3] Novel two-dimensional transition metal chalcogenides created by epitaxial growth
    Hong-Liang Lu
    Yu-Yang Zhang
    Xiao Lin
    Hong-Jun Gao
    Science China(Physics,Mechanics & Astronomy), 2021, Mechanics & Astronomy)2021 (10) : 27 - 41
  • [4] Novel two-dimensional transition metal chalcogenides created by epitaxial growth
    Hong-Liang Lu
    Yu-Yang Zhang
    Xiao Lin
    Hong-Jun Gao
    Science China Physics, Mechanics & Astronomy, 2021, 64
  • [5] Two-dimensional Organic Metal Chalcogenides
    付志华
    徐刚
    Chinese Journal of Structural Chemistry, 2020, 39 (12) : 2131 - 2138
  • [6] Two-dimensional Organic Metal Chalcogenides
    Fu Zhi-Hua
    Xu Gang
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2020, 39 (12) : 2131 - 2138
  • [7] Oxidation Behaviors of Two-dimensional Metal Chalcogenides
    Guo, Yu
    Zhou, Si
    Zhao, Jijun
    CHEMNANOMAT, 2020, 6 (06) : 838 - 849
  • [8] Two-dimensional magnetic transition metal chalcogenides
    Huang, Yu Li
    Chen, Wei
    Wee, Andrew T. S.
    SMARTMAT, 2021, 2 (02): : 139 - 153
  • [9] Intercalation in two-dimensional transition metal chalcogenides
    Jung, Yeonwoong
    Zhou, Yu
    Cha, Judy J.
    INORGANIC CHEMISTRY FRONTIERS, 2016, 3 (04): : 452 - 463
  • [10] Epitaxial Growth of Two-Dimensional Layered Transition Metal Dichalcogenides
    Choudhury, Tanushree H.
    Zhang, Xiaotian
    Al Balushi, Zakaria Y.
    Chubarov, Mikhail
    Redwing, Joan M.
    ANNUAL REVIEW OF MATERIALS RESEARCH, VOL 50, 2020, 2020, 50 : 155 - 177