Mapping tropical forest aboveground biomass using airborne SAR tomography

被引:6
|
作者
Ramachandran, Naveen [1 ]
Saatchi, Sassan [2 ]
Tebaldini, Stefano [3 ]
d'Alessandro, Mauro Mariotti [3 ]
Dikshit, Onkar [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Civil Engn, Kanpur 208016, India
[2] CALTECH, Jet Prop Lab JPL, Pasadena, CA 91125 USA
[3] Politecn Milan, Dipartimento Elettron Informaz & Bioingn, I-20133 Milan, Italy
关键词
CARBON-CYCLE; BASE-LINE; BACKSCATTER; RETRIEVAL;
D O I
10.1038/s41598-023-33311-y
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mapping tropical forest aboveground biomass (AGB) is important for quantifying emissions from land use change and evaluating climate mitigation strategies but remains a challenging problem for remote sensing observations. Here, we evaluate the capability of mapping AGB across a dense tropical forest using tomographic Synthetic Aperture Radar (TomoSAR) measurements at P-band frequency that will be available from the European Space Agency's BIOMASS mission in 2024. To retrieve AGB, we compare three different TomoSAR reconstruction algorithms, back-projection (BP), Capon, and MUltiple SIgnal Classification (MUSIC), and validate AGB estimation from models using TomoSAR variables: backscattered power at 30 m height, forest height (FH), backscatter power metric (Q), and their combination. TropiSAR airborne campaign data in French Guiana, inventory plots, and airborne LiDAR measurements are used as reference data to develop models and calculate the AGB estimation uncertainty. We used univariate and multivariate regression models to estimate AGB at 4-ha grid cells, the nominal resolution of the BIOMASS mission. Our results show that the BP-based variables produced better AGB estimates compared to their counterparts, suggesting a more straightforward TomoSAR processing for the mission. The tomographic FH and AGB estimation have an average relative uncertainty of less than 10% with negligible systematic error across the entire biomass range (similar to 200-500 Mg ha(-1)). We show that the backscattered power at 30 m height at HV polarization is the best single measurement to estimate AGB with significantly better accuracy than the LiDAR height metrics, and combining it with FH improved the accuracy of AGB estimation to less than 7% of the mean. Our study implies that using multiple information from P-band TomoSAR data from the BIOMASS mission provides a new capability to map tropical forest biomass and its changes accurately.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Mapping tropical forest aboveground biomass using airborne SAR tomography
    Naveen Ramachandran
    Sassan Saatchi
    Stefano Tebaldini
    Mauro Mariotti d’Alessandro
    Onkar Dikshit
    [J]. Scientific Reports, 13
  • [2] Combination of SAR Polarimetric Parameters for Estimating Tropical Forest Aboveground Biomass
    Truong Thi Cat Tuong
    Tani, Hiroshi
    Wang, Xiufeng
    Nguyen Quang Thang
    Ha Manh Bui
    [J]. POLISH JOURNAL OF ENVIRONMENTAL STUDIES, 2020, 29 (05): : 3353 - 3365
  • [3] Mapping the spatial distribution of Colombia's forest aboveground biomass using SAR and optical data
    Rodriguez-Veiga, P.
    Barbosa-Herrera, A. P.
    Barreto-Silva, J. S.
    Bispo, P. C.
    Cabrera, E.
    Capachero, C.
    Galindo, G.
    Gou, Y.
    Moreno, L. M.
    Louis, V.
    Lozano, P.
    Pacheco-Pascagaza, A. M.
    Pachon-Cendales, I. P.
    Phillips-Bernal, J. F.
    Roberts, J.
    Salinas, N. R.
    Vergara, L.
    Zuluaga, A. C.
    Balzter, H.
    [J]. ISPRS TECHNICAL COMMISSION III WG III/2, 10 JOINT WORKSHOP MULTIDISCIPLINARY REMOTE SENSING FOR ENVIRONMENTAL MONITORING, 2019, 42-3 (W7): : 57 - 60
  • [4] Mapping forest aboveground biomass using airborne hyperspectral and LiDAR data in the mountainous conditions of Central Europe
    Brovkina, Olga
    Novotny, Jan
    Cienciala, Emil
    Zemek, Frantisek
    Russ, Radek
    [J]. ECOLOGICAL ENGINEERING, 2017, 100 : 219 - 230
  • [5] FOREST ABOVEGROUND BIOMASS ESTIMATION FROM AIRBORNE L-BAND SAR DATA USING MACHINE LEARNING
    Ramachandran, Naveen
    Dikshit, Onkar
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6403 - 6405
  • [6] Mapping of Boreal forest biomass using SAR
    Ranson, KJ
    Sun, GQ
    Montgomery, B
    Lang, RH
    [J]. IGARSS '96 - 1996 INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM: REMOTE SENSING FOR A SUSTAINABLE FUTURE, VOLS I - IV, 1996, : 577 - 579
  • [7] Airborne P-band SAR applied to the aboveground biomass studies in the Brazilian tropical rainforest
    Santos, JR
    Freitas, CC
    Araujo, LS
    Dutra, LV
    Mura, JC
    Gama, FF
    Soler, LS
    Sant'Anna, SJS
    [J]. REMOTE SENSING OF ENVIRONMENT, 2003, 87 (04) : 482 - 493
  • [8] Regional aboveground forest biomass using airborne and spaceborne LiDAR in Quebec
    Boudreau, Jonathan
    Nelson, Ross F.
    Margolis, Hank A.
    Beaudoin, Andre
    Guindon, Luc
    Kimes, Daniel S.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2008, 112 (10) : 3876 - 3890
  • [9] Aboveground biomass estimation in a subtropical forest using airborne hyperspectral data
    Shen, Xin
    Cao, Lin
    Liu, Kun
    She, Guanghui
    Ruan, Honghua
    [J]. 2016 4RTH INTERNATIONAL WORKSHOP ON EARTH OBSERVATION AND REMOTE SENSING APPLICATIONS (EORSA), 2016,
  • [10] STATEWIDE MAPPING AND ESTIMATION OF VEGETATION ABOVEGROUND BIOMASS USING AIRBORNE LIDAR
    Chen, Qi
    McRoberts, Ronald
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 4442 - 4444