Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements

被引:16
|
作者
Cai, Zhenzhen [1 ]
Deng, Xiaolin [1 ]
Wang, Guangxiang [2 ]
机构
[1] Wuzhou Univ, Sch Elect & Informat Engn, Wuzhou, Peoples R China
[2] Guilin Univ Elect Technol, Sch Mech & Elect Engn, Guilin, Peoples R China
基金
中国国家自然科学基金;
关键词
In-plane impact; Hexachiral honeycomb; Negative Poisson's ratio; Energy absorption;
D O I
10.1007/s43452-024-00895-9
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
This study explores the design and performance of axisymmetric hexachiral honeycombs, utilizing the hexachiral honeycomb framework and axisymmetric design method. Four axisymmetric hexachiral honeycombs with distinct arrangements were developed: left-right symmetry hexachiral honeycomb (LSHH), up-down symmetry hexachiral honeycomb (USHH), central symmetry hexachiral honeycomb (CSHH), and subunits symmetry hexachiral honeycomb (SSHH). The deformation patterns and compression behaviors of these honeycombs were comprehensively examined through experimental and numerical simulations, and comparisons were made with a non-symmetric hexachiral honeycomb (NHH). The results indicate that symmetrically designed honeycombs exhibit a larger mean plateau stress than the asymmetrically designed the NHH during low-velocity impacts. The study further discusses deformation patterns, specific energy absorption, and the negative Poisson's ratio effect across the five honeycombs under different parameters. Notably, symmetrically designed honeycombs demonstrate superior specific energy absorption, and the negative Poisson's ratio effect becomes evident at an impact velocity of 10 m/s. However, the advantages of axisymmetric honeycombs diminish at higher impact velocities of 50 m/s and 100 m/s. The Poisson's ratio effects of symmetric honeycombs weaken with an increase in the circular ligament r of the honeycomb. Additionally, the study identifies that platform stress and SEA increase for honeycombs with horizontal cell numbers greater than 6.
引用
收藏
页数:30
相关论文
共 50 条
  • [1] Energy absorption analysis under in-plane impact of hexachiral honeycomb with different arrangements
    Zhenzhen Cai
    Xiaolin Deng
    Guangxiang Wang
    Archives of Civil and Mechanical Engineering, 24
  • [2] Energy absorption characteristics of a novel six-missing rib honeycomb under in-plane impact
    Cai, Zhenzhen
    Deng, Xiaolin
    MECHANICS OF ADVANCED MATERIALS AND STRUCTURES, 2024,
  • [3] Energy absorption of honeycomb randomly filled with inclusions subjected to in-plane impact
    Nakamoto, Hiroaki
    Adachi, Tadaharu
    Araki, Wakako
    INTERNATIONAL JOURNAL OF MODERN PHYSICS B, 2008, 22 (9-11): : 1343 - 1348
  • [4] Energy absorption of pre-folded honeycomb under in-plane dynamic loading
    Zhai, Jiayue
    Liu, Yufei
    Geng, Xinyu
    Zheng, Wei
    Zhao, Zhijun
    Cui, Chengbo
    Li, Meng
    THIN-WALLED STRUCTURES, 2019, 145
  • [5] In-plane dynamics crushing of a reinforced honeycomb with enhanced energy absorption
    Pan, Junwei
    Lyu, Manqi
    Li, Meng
    Cai, Jianguo
    INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2024, 183
  • [6] Energy absorption and in-plane crushing behavior of aluminium reinforced honeycomb
    Thomas, T.
    Tiwari, G.
    VACUUM, 2019, 166 : 364 - 369
  • [7] Cell geometry effect on in-plane energy absorption of periodic honeycomb structures
    F. N. Habib
    P. Iovenitti
    S. H. Masood
    M. Nikzad
    The International Journal of Advanced Manufacturing Technology, 2018, 94 : 2369 - 2380
  • [8] Cell geometry effect on in-plane energy absorption of periodic honeycomb structures
    Habib, F. N.
    Iovenitti, P.
    Masood, S. H.
    Nikzad, M.
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2018, 94 (5-8): : 2369 - 2380
  • [9] Energy absorption and in-plane mechanical behavior of honeycomb structures with reinforced strut
    Lu, Qi
    Deng, Xiaolin
    COMPOSITE STRUCTURES, 2023, 322
  • [10] In-plane dynamic crashing behavior and energy absorption of novel bionic honeycomb structures
    Niu, Xiaoqiang
    Xu, Fengxiang
    Zou, Zhen
    Fang, Tengyuan
    Zhang, Suo
    Xie, Quanmin
    COMPOSITE STRUCTURES, 2022, 299