Geometric deep learning as a potential tool for antimicrobial peptide prediction

被引:12
|
作者
Fernandes, Fabiano C. [1 ,2 ]
Cardoso, Marlon H. [1 ,3 ,4 ]
Gil-Ley, Abel [3 ]
Luchi, Livia V. [3 ]
da Silva, Maria G. L. [1 ]
Macedo, Maria L. R. [4 ]
de la Fuente-Nunez, Cesar [5 ,6 ,7 ,8 ,9 ]
Franco, Octavio L. [1 ,3 ]
机构
[1] Univ Catolica Brasilia, Ctr Anal Prote & Bioquim, Posgrad Ciencias Genom & Biotecnol, Brasilia, DF, Brazil
[2] Inst Fed Brasilia, Dept Ciencia Comp, Brasilia, DF, Brazil
[3] Univ Catolica Dom Bosco, S Inova Biotech, Programa Posgrad Biotecnol, Campo Grande, MS, Brazil
[4] Univ Fed Mato Grosso do Sul, Lab Purificacao Prot & Suas Funcoes Biol, Campo Grande, MS, Brazil
[5] Univ Penn, Perelman Sch Med, Inst Translat Med & Therapeut, Inst Biomed Informat,Machine Biol Grp,Dept Psychi, Philadelphia, PA 19104 USA
[6] Univ Penn, Perelman Sch Med, Inst Translat Med & Therapeut, Inst Biomed Informat,Machine Biol Grp,Dept Microb, Philadelphia, PA 19104 USA
[7] Univ Penn, Sch Engn & Appl Sci, Dept Bioengn, Philadelphia, PA 19104 USA
[8] Univ Penn, Sch Engn & Appl Sci, Dept Chem & Biomol Engn, Philadelphia, PA 19104 USA
[9] Univ Penn, Penn Inst Computat Sci, Philadelphia, PA 19104 USA
来源
基金
美国国家卫生研究院;
关键词
antimicrobial peptide prediction; geometric deep learning; antimicrobial peptide classification; antimicrobial peptide design; explainable artificial intelligence; CONVOLUTIONAL NEURAL-NETWORKS;
D O I
10.3389/fbinf.2023.1216362
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antimicrobial peptides (AMPs) are components of natural immunity against invading pathogens. They are polymers that fold into a variety of three-dimensional structures, enabling their function, with an underlying sequence that is best represented in a non-flat space. The structural data of AMPs exhibits non-Euclidean characteristics, which means that certain properties, e.g., differential manifolds, common system of coordinates, vector space structure, or translation-equivariance, along with basic operations like convolution, in non-Euclidean space are not distinctly established. Geometric deep learning (GDL) refers to a category of machine learning methods that utilize deep neural models to process and analyze data in non-Euclidean settings, such as graphs and manifolds. This emerging field seeks to expand the use of structured models to these domains. This review provides a detailed summary of the latest developments in designing and predicting AMPs utilizing GDL techniques and also discusses both current research gaps and future directions in the field.
引用
收藏
页数:6
相关论文
共 50 条
  • [1] Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction
    Li, Chenkai
    Warren, Rene L.
    Birol, Inanc
    [J]. BMC RESEARCH NOTES, 2023, 16 (01)
  • [2] Models and data of AMPlify: a deep learning tool for antimicrobial peptide prediction
    Chenkai Li
    René L. Warren
    Inanc Birol
    [J]. BMC Research Notes, 16
  • [3] Deep learning improves antimicrobial peptide recognition
    Veltri, Daniel
    Kamath, Uday
    Shehu, Amarda
    [J]. BIOINFORMATICS, 2018, 34 (16) : 2740 - 2747
  • [4] Deep Learning for Novel Antimicrobial Peptide Design
    Wang, Christina
    Garlick, Sam
    Zloh, Mire
    [J]. BIOMOLECULES, 2021, 11 (03) : 1 - 17
  • [5] Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries
    Aditi Gautam
    Asuda Sharma
    Sarika Jaiswal
    Samar Fatma
    Vasu Arora
    M. A. Iquebal
    S. Nandi
    J. K. Sundaray
    P. Jayasankar
    Anil Rai
    Dinesh Kumar
    [J]. Probiotics and Antimicrobial Proteins, 2016, 8 : 141 - 149
  • [6] Development of Antimicrobial Peptide Prediction Tool for Aquaculture Industries
    Gautam, Aditi
    Sharma, Asuda
    Jaiswal, Sarika
    Fatma, Samar
    Arora, Vasu
    Iquebal, M. A.
    Nandi, S.
    Sundaray, J. K.
    Jayasankar, P.
    Rai, Anil
    Kumar, Dinesh
    [J]. PROBIOTICS AND ANTIMICROBIAL PROTEINS, 2016, 8 (03) : 141 - 149
  • [7] amPEPpy 1.0: a portable and accurate antimicrobial peptide prediction tool
    Lawrence, Travis J.
    Carper, Dana L.
    Spangler, Margaret K.
    Carrell, Alyssa A.
    Rush, Tomas A.
    Minter, Stephen J.
    Weston, David J.
    Labbe, Jessy L.
    [J]. BIOINFORMATICS, 2021, 37 (14) : 2058 - 2060
  • [8] Geometric Deep Learning for Molecular Crystal Structure Prediction
    Kilgour, Michael
    Rogal, Jutta
    Tuckerman, Mark
    [J]. JOURNAL OF CHEMICAL THEORY AND COMPUTATION, 2023, 19 (14) : 4743 - 4756
  • [9] EQUIBIND: Geometric Deep Learning for Drug Binding Structure Prediction
    Staerk, Hannes
    Ganea, Octavian-Eugen
    Pattanaik, Lagnajit
    Barzilay, Regina
    Jaakkola, Tommi
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 162, 2022,
  • [10] Citywide traffic speed prediction: A geometric deep learning approach
    Yu, James J. Q.
    [J]. KNOWLEDGE-BASED SYSTEMS, 2021, 212