Development and internal validation of a multifactorial risk prediction model for gallbladder cancer in a high-incidence country

被引:5
|
作者
Boekstegers, Felix [1 ]
Scherer, Dominique [1 ]
Barahona Ponce, Carol [1 ]
Marcelain, Katherine [2 ]
Garate-Calderon, Valentina [1 ,2 ]
Waldenberger, Melanie [3 ]
Morales, Erik [4 ,5 ]
Rojas, Armando [5 ]
Munoz, Cesar [4 ,5 ]
Retamales, Javier [6 ]
de Toro, Gonzalo [7 ,8 ]
Barajas, Olga [2 ,9 ]
Rivera, Maria Teresa [10 ]
Cortes, Analia [10 ]
Loader, Denisse [11 ]
Saavedra, Javiera [11 ]
Gutierrez, Lorena [12 ]
Ortega, Alejandro [13 ]
Bertran, Maria Enriqueta [14 ]
Bartolotti, Leonardo [15 ]
Gabler, Fernando [16 ]
Campos, Monica [16 ]
Alvarado, Juan [17 ]
Moisan, Fabricio [17 ]
Spencer, Loreto [17 ]
Nervi, Bruno [18 ]
Carvajal-Hausdorf, Daniel [19 ]
Losada, Hector [20 ]
Almau, Mauricio [21 ]
Fernandez, Plinio [21 ]
Olloquequi, Jordi [22 ,23 ]
Fuentes-Guajardo, Macarena [24 ]
Gonzalez-Jose, Rolando [25 ]
Bortolini, Maria Catira [26 ]
Acuna-Alonzo, Victor [27 ]
Gallo, Carla [28 ]
Linares, Andres Ruiz [29 ,30 ,31 ,32 ]
Rothhammer, Francisco [33 ]
Lorenzo Bermejo, Justo [1 ,34 ,35 ]
机构
[1] Heidelberg Univ, Inst Med Biometry, Stat Genet Res Grp, Heidelberg, Germany
[2] Univ Chile, Med Fac, Dept Basic & Clin Oncol, Santiago, Chile
[3] German Res Ctr Environm Hlth, Res Unit Mol Epidemiol, Neuherberg, Germany
[4] Hosp Reg Talca, Talca, Chile
[5] Univ Catolica Maule, Fac Med, Talca, Chile
[6] Inst Nacl Canc, Santiago, Chile
[7] Hosp Puerto Montt, Puerto Montt, Chile
[8] Univ Austral Chile Sede Puerto Montt, Escuela Tecnol Med, Puerto Montt, Chile
[9] Hosp Clin Univ Chile, Santiago, Chile
[10] Hosp Salvador, Santiago, Chile
[11] Hosp Padre Hurtado, Santiago, Chile
[12] Hosp San Juan Dios, Santiago, Chile
[13] Hosp Reg, Arica, Chile
[14] Hosp Base Valdivia, Unidad Registro Hosp Canc, Valdivia, Chile
[15] Hosp Base Valdivia, Valdivia, Chile
[16] Hosp San Borja Arriaran, Santiago, Chile
[17] Hosp Reg Guillermo Grant Benavente, Concepcion, Chile
[18] Pontificia Univ Catolica Chile, Dept Hematol & Oncol, Escuela Med, Santiago, Chile
[19] Univ Desarrollo, Fac Med, Clin Alemana, Santiago, Chile
[20] Univ La Frontera, Dept Cirugia, Temuco, Chile
[21] Hosp Rancagua, Rancagua, Chile
[22] Univ Barcelona, Fac Pharm & Food Sci, Dept Biochem & Physiol, Barcelona, Spain
[23] Univ Autonoma Chile, Fac Ciencias Salud, Talca, Chile
[24] Tarapaca Univ, Fac Ciencias Salud, Dept Tecnol Med, Arica, Chile
[25] Consejo Nacl Invest Cient & Tecn, Inst Patagon Ciencias Sociales & Humanas, Ctr Nacl Patagon, Puerto Madryn, Argentina
[26] Univ Fed Rio Grande do Sul, Dept Genet, Inst Biociencias, Porto Alegre, Brazil
[27] Natl Inst Anthropol & Hist, Mexico City, Mexico
[28] Univ Peruana Cayetano Heredia, Fac Ciencias & Filosofia, Labs Invest & Desarrollo, Lima, Peru
[29] Fudan Univ, Human Phenome Inst, Ctr Genet & Dev, Sch Life Sci, Shanghai, Peoples R China
[30] Aix Marseille Univ, CNRS, EFS, ADES, Marseille, France
[31] UCL, Dept Genet Evolut & Environm, London, England
[32] UCL, UCL Genet Inst, London, England
[33] Tarapaca Univ, Inst Alta Invest, Arica, Chile
[34] Inst Cancerol Strasbourg Europe, Dept Biostat Precis Oncol, Strasbourg, France
[35] Heidelberg Univ, Inst Med Biometry, Stat Genet Res Grp, Neuenheimer Feld 130-3, D-69126 Heidelberg, Germany
基金
欧盟地平线“2020”;
关键词
cholecystectomy; gallbladder cancer; gallstones; native American ancestry; non-genetic and genetic risk factors; risk prediction;
D O I
10.1002/ijc.34607
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Since 2006, Chile has been implementing a gallbladder cancer (GBC) prevention program based on prophylactic cholecystectomy for gallstone patients aged 35 to 49 years. The effectiveness of this prevention program has not yet been comprehensively evaluated. We conducted a retrospective study of 473 Chilean GBC patients and 2137 population-based controls to develop and internally validate three GBC risk prediction models. The Baseline Model accounted for gallstones while adjusting for sex and birth year. Enhanced Model I also included the non-genetic risk factors: body mass index, educational level, Mapuche surnames, number of children and family history of GBC. Enhanced Model II further included Mapuche ancestry and the genotype for rs17209837. Multiple Cox regression was applied to assess the predictive performance, quantified by the area under the precision-recall curve (AUC-PRC) and the number of cholecystectomies needed (NCN) to prevent one case of GBC at age 70 years. The AUC-PRC for the Baseline Model (0.44%, 95%CI 0.42-0.46) increased by 0.22 (95%CI 0.15-0.29) when non-genetic factors were included, and by 0.25 (95%CI 0.20-0.30) when incorporating non-genetic and genetic factors. The overall NCN for Chileans with gallstones (115, 95%CI 104-131) decreased to 92 (95%CI 60-128) for Chileans with a higher risk than the median according to Enhanced Model I, and to 80 (95%CI 59-110) according to Enhanced Model II. In conclusion, age, sex and gallstones are strong risk factors for GBC, but consideration of other non-genetic factors and individual genotype data improves risk prediction and may optimize allocation of financial resources and surgical capacity.
引用
收藏
页码:1151 / 1161
页数:11
相关论文
共 50 条
  • [1] Setup and Assessment of a Risk Prediction Model for Gallbladder Cancer in a High-Incidence Country
    Boekstegers, Felix
    Bermejo, Justo Lorenzo
    HUMAN HEREDITY, 2017, 83 (05) : 227 - 228
  • [2] Development and Validation of a Comprehensive Risk Prediction Model for Polypoid Lesions of the Gallbladder
    Dou, Chunxu
    Han, Yanzhi
    Lin, Lu
    Wen, Jiancheng
    Zhao, Wang
    Yang, Yang
    Guan, Shaoting
    Li, Xiaofeng
    Gao, Minzhao
    Lu, Jing
    CLINICAL AND EXPERIMENTAL PHARMACOLOGY AND PHYSIOLOGY, 2025, 52 (04)
  • [3] Conditional Relative Survival of Gallbladder Cancer: A Population-Based Study in a High-Incidence Asian Country from 1999 to 2021
    Kang, Mee Joo
    Ha, Johyun
    Park, Sang-Jae
    Park, Hyeong Min
    Jung, Kyu-Won
    Han, Sung-Sik
    ANNALS OF SURGICAL ONCOLOGY, 2025,
  • [4] Prediction of psychosis: model development and internal validation of a personalized risk calculator
    Lee, Tae Young
    Hwang, Wu Jeong
    Kim, Nahrie S.
    Park, Inkyung
    Lho, Silvia Kyungjin
    Moon, Sun-Young
    Oh, Sanghoon
    Lee, Junhee
    Kim, Minah
    Woo, Choong-Wan
    Kwon, Jun Soo
    PSYCHOLOGICAL MEDICINE, 2022, 52 (13) : 2632 - 2640
  • [5] Development and validation of a prediction model for early screening of people at high risk for colorectal cancer
    Xu, Ling-Li
    Lin, Yi
    Han, Li-Yuan
    Wang, Yue
    Li, Jian-Jiong
    Dai, Xiao-Yu
    WORLD JOURNAL OF GASTROENTEROLOGY, 2024, 30 (05) : 450 - 461
  • [6] Risk prediction model for lung cancer incorporating metabolic markers: Development and internal validation in a Chinese population
    Lyu, Zhangyan
    Li, Ni
    Chen, Shuohua
    Wang, Gang
    Tan, Fengwei
    Feng, Xiaoshuang
    Li, Xin
    Wen, Yan
    Yang, Zhuoyu
    Wang, Yalong
    Li, Jiang
    Chen, Hongda
    Lin, Chunqing
    Ren, Jiansong
    Shi, Jufang
    Wu, Shouling
    Dai, Min
    He, Jie
    CANCER MEDICINE, 2020, 9 (11): : 3983 - 3994
  • [7] Risk factors for esophageal cancer in a high-incidence area of Malawi
    Anja L. Geßner
    Angelika Borkowetz
    Torsten J. Wilhelm
    Enock Ludzu
    Michael Baier
    Yamikani Mastala
    Saulos Nyirenda
    Henning Mothes
    Cancer Causes & Control, 2021, 32 : 1347 - 1354
  • [8] Risk factors for esophageal cancer in a high-incidence area of Malawi
    Gessner, Anja L.
    Borkowetz, Angelika
    Wilhelm, Torsten J.
    Ludzu, Enock
    Baier, Michael
    Mastala, Yamikani
    Nyirenda, Saulos
    Mothes, Henning
    CANCER CAUSES & CONTROL, 2021, 32 (12) : 1347 - 1354
  • [9] Development and validation of a risk prediction model for pancreatic cancer: PANCPRO
    Klein, AP
    Wang, W
    Chen, S
    Parmigiani, G
    GENETIC EPIDEMIOLOGY, 2005, 29 (03) : 258 - 259
  • [10] Development and validation of a risk prediction model for incident liver cancer
    Liu, Yingxin
    Zhang, Jingyi
    Wang, Weifeng
    Li, Guowei
    FRONTIERS IN PUBLIC HEALTH, 2022, 10