Quasi-likelihood analysis of fractional Brownian motion with constant drift under high-frequency observations

被引:1
|
作者
Takabatake, Tetsuya [1 ]
机构
[1] Hiroshima Univ, Sch Econ, 2-1 Kagamiyama 1 Chome, Higashihiroshima, Hiroshima 7398525, Japan
关键词
Fractional Brownian motion; High-frequency observations; Quasi-whittle likelihood estimator; PARAMETER-ESTIMATION; VOLATILITY;
D O I
10.1016/j.spl.2023.110006
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Consider an estimation of the Hurst parameter H is an element of (0,1) and the volatility parameter sigma > 0for a fractional Brownian motion with a drift term under high-frequency observations with a finite time interval. In the present paper, we propose a consistent estimator of the parameter theta=(H,sigma) combining the ideas of a quasi-likelihood function based on a local Gaussian approximation of a high-frequently observed time series and its frequency-domain approximation. Moreover, we prove an asymptotic normality property of the proposed estimator for all H is an element of (0,1) when the drift process is constant.
引用
收藏
页数:10
相关论文
共 50 条
  • [1] High-frequency trading with fractional Brownian motion
    Paolo Guasoni
    Yuliya Mishura
    Miklós Rásonyi
    [J]. Finance and Stochastics, 2021, 25 : 277 - 310
  • [2] High-frequency trading with fractional Brownian motion
    Guasoni, Paolo
    Mishura, Yuliya
    Rasonyi, Miklos
    [J]. FINANCE AND STOCHASTICS, 2021, 25 (02) : 277 - 310
  • [3] Fisher Information for Fractional Brownian Motion Under High-Frequency Discrete Sampling
    Kawai, Reiichiro
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2013, 42 (09) : 1628 - 1636
  • [4] A Noisy Fractional Brownian Motion Model for Multiscale Correlation Analysis of High-Frequency Prices
    Leung, Tim
    Zhao, Theodore
    [J]. MATHEMATICS, 2024, 12 (06)
  • [5] EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION
    Hu Yaozhong
    David, Nualart
    Xiao Weilin
    Zhang Weiguo
    [J]. ACTA MATHEMATICA SCIENTIA, 2011, 31 (05) : 1851 - 1859
  • [6] EXACT MAXIMUM LIKELIHOOD ESTIMATOR FOR DRIFT FRACTIONAL BROWNIAN MOTION AT DISCRETE OBSERVATION
    胡耀忠
    Nualart David
    肖炜麟
    张卫国
    [J]. Acta Mathematica Scientia, 2011, 31 (05) : 1851 - 1859
  • [7] On Drift Parameter Estimation in Models with Fractional Brownian Motion by Discrete Observations
    Mishura, Yuliya
    Ralchenko, Kostiantyn
    [J]. AUSTRIAN JOURNAL OF STATISTICS, 2014, 43 (03) : 217 - 228
  • [8] Monitoring Ongoing Clinical Trials Under Fractional Brownian Motion With Drift
    Zhang, Peng
    Shih, Weichung Joe
    Lin, Yong
    Lan, K. K. Gordon
    Xie, Tai
    [J]. STATISTICS IN BIOPHARMACEUTICAL RESEARCH, 2024,
  • [9] IS BROWNIAN MOTION NECESSARY TO MODEL HIGH-FREQUENCY DATA?
    Ait-Sahalia, Yacine
    Jacod, Jean
    [J]. ANNALS OF STATISTICS, 2010, 38 (05): : 3093 - 3128
  • [10] Sequential monitoring clinical trial by conditional power under drift fractional Brownian motion
    Xia, Leixin
    Chen, Baojiang
    Lai, Dejian
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2022,