Research on Energy Savings of an Air-Source Heat Pump Hot Water System in a College Student's Dormitory Building

被引:0
|
作者
Zeng, Yijiang [1 ]
Li, Shengyu [1 ]
Lu, Jun [1 ]
Li, Xiaodong [2 ]
Xing, Dingding [3 ]
Xiao, Jipan [3 ]
Zhang, Zhanhao [4 ]
Li, Leihong [1 ]
Shi, Xuhui [1 ]
机构
[1] Chongqing Univ, Sch Civil Engn, Chongqing 400045, Peoples R China
[2] Chongqing Huixian Youce Technol Co Ltd, Chongqing 400039, Peoples R China
[3] Chongqing Control Environm Technol Grp Co Ltd, Chongqing 401332, Peoples R China
[4] China State Construct Engn Corp Ltd, Beijing 100037, Peoples R China
关键词
energy-saving; experimental tests; TRNSYS simulation; time-sharing control; CONTROL STRATEGY; PERFORMANCE; OPTIMIZATION; COEFFICIENT; SIMULATION; BEHAVIOR;
D O I
10.3390/su151310006
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Centralized hot water systems are commonly installed in college student dormitories, representing a typical application for such systems. To achieve sustainable and environmentally friendly heating solutions, air-source heat pump hot water systems have gained attention for their high efficiency and energy-saving characteristics. By implementing heat pump technology, China could make significant progress towards achieving its carbon neutrality goals by reducing energy consumption and associated emissions. In this study, the heating performance of an air-source heat pump hot water system was tested in the field over the course of a year at a university in Chongqing, China. A simulation model was constructed using TRNSYS software, and a time-sharing control strategy was proposed to analyze the system's operating characteristics and energy-saving performance. Results showed a 6% increase in unit annual average Coefficient of Performance (COP) and annual electricity savings of 10,027 kW & BULL;h, with an energy-saving rate of 8.77% after time-sharing control. The study highlights the significant economic and environmental benefits of adopting sustainable energy solutions, particularly in the context of increasing global greenhouse gas emissions.
引用
收藏
页数:24
相关论文
共 50 条
  • [1] Research on parallel hot water system of condensing air-source heat pump
    Jiang Y.
    Zeng Z.
    Bi L.
    Liu Y.
    Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal of Central South University (Science and Technology), 2019, 50 (09): : 2310 - 2316
  • [2] SOLAR AIR-SOURCE HEAT PUMP HOT WATER UNIT CONTROL SYSTEM DESIGN
    Yang, Li
    Tian, He
    Jiang, Juyuan
    2016 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATION, 2016, : 1203 - 1208
  • [3] An experimental investigation of the performance of an air-source heat pump hot-water system based on saltwater energy towers
    Chen, Wei
    Qu, Li-Juan
    Wang, Chao
    Yu, Zi-Tao
    Wang, Jing-Hua
    Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2012, 46 (08): : 1485 - 1489
  • [4] NEW AIR-SOURCE HEAT PUMP SYSTEM
    MATSUDA, T
    MIYAMOTO, S
    MINOSHIMA, Y
    ASHRAE JOURNAL-AMERICAN SOCIETY OF HEATING REFRIGERATING AND AIR-CONDITIONING ENGINEERS, 1978, 20 (08): : 32 - 35
  • [5] Performance Analysis of the Coupled Heating System of the Air-Source Heat Pump, the Energy Accumulator and the Water-Source Heat Pump
    Zhou, Wenhe
    Wang, Bin
    Wang, Meng
    Chen, Yuying
    ENERGIES, 2022, 15 (19)
  • [6] Applied Research of Solar Assisted Air-Source Heat Pump System
    Lu ChunPing
    Jia YuGui
    Hao CaiXia
    2009 ASIA-PACIFIC POWER AND ENERGY ENGINEERING CONFERENCE (APPEEC), VOLS 1-7, 2009, : 342 - 345
  • [7] Experimental research on a solar air-source heat pump system with phase change energy storage
    Chen, Haifei
    Wang, Yunjie
    Li, Jing
    Cai, Baorui
    Zhang, Fuwei
    Lu, Tao
    Yang, Jie
    Jiang, Lvlin
    Zhang, Yang
    Zhou, Jinzhi
    ENERGY AND BUILDINGS, 2020, 228 (228)
  • [8] Domestic hot water supply with air-source CO2 heat pump
    Orzechowski, T.
    Orzechowski, M.
    Osowska, M.
    Rownicka, K.
    INTERNATIONAL CONFERENCE ON THE SUSTAINABLE ENERGY AND ENVIRONMENTAL DEVELOPMENT, 2019, 214
  • [9] Experimental research and operation optimization of an air-source heat pump water heater
    Guo, J. J.
    Wu, J. Y.
    Wang, R. Z.
    Li, S.
    APPLIED ENERGY, 2011, 88 (11) : 4128 - 4138
  • [10] NEW AIR-SOURCE HEAT PUMP SYSTEM.
    Matsuda, Toshiharu
    Miyamoto, Seigo
    Minoshima, Yasuo
    ASHRAE Journal, 1978, 20 (08): : 32 - 35