Performance and mechanisms of enhanced oil recovery via amphiphilic polymer flooding in high salinity reservoir

被引:5
|
作者
Zhu, Zhou [1 ]
Kou, Hai-qun [1 ]
Zhang, Zhi [1 ]
Wang, Yu-xiu [1 ]
Wan, Hai-qing [1 ]
机构
[1] Yuzhang Normal Univ, Dept Ecol & Environm, Nanchang, Jiangxi, Peoples R China
关键词
amphiphilic polymer; enhanced oil recovery; micro-displacement; oil displacement performance; polymer flooding; HYDROPHOBICALLY-MODIFIED POLYACRYLAMIDE; HEAVY OIL; BEHAVIOR;
D O I
10.1080/10916466.2022.2105358
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
The amphiphilic polymer has excellent performance and is expected to replace traditional polymer oil-displacing agent in China. In this study, the iso-viscosity method evaluates the oil displacement performance of the betaine-type amphiphilic polymers with different content of hydrophobic groups in high salinity reservoirs. Rheometer, emulsion stability analyzer, laser particle size analyzer, and visualization of microscopic displacement are used to explore their oil displacement mechanism. The results show that the content of hydrophobic groups, and the recovery ratio of polymer flooding shows a positive correlation. The difference in the displacement performance reflects the difference in the viscoelasticity of the displacement system and the ability to emulsify crude oil. The synergistic effect of the two aspects further improves the oil washing efficiency. This study provides a reference for the practical application of the amphiphilic polymer, providing a theoretical basis to select polymer flooding agents in high salinity reservoirs.
引用
收藏
页码:2006 / 2016
页数:11
相关论文
共 50 条
  • [1] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    LU Xiangguo
    CAO Bao
    XIE Kun
    CAO Weijia
    LIU Yigang
    ZHANG Yunbao
    WANG Xiaoyan
    ZHANG Jie
    Petroleum Exploration and Development, 2021, 48 (01) : 169 - 178
  • [2] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    Lu Xiangguo
    Cao Bao
    Xie Kun
    Cao Weijia
    Liu Yigang
    Zhang Yunbao
    Wang Xiaoyan
    Zhang Jie
    PETROLEUM EXPLORATION AND DEVELOPMENT, 2021, 48 (01) : 169 - 178
  • [3] Enhanced oil recovery mechanisms of polymer flooding in a heterogeneous oil reservoir
    Lu X.
    Cao B.
    Xie K.
    Cao W.
    Liu Y.
    Zhang Y.
    Wang X.
    Zhang J.
    Shiyou Kantan Yu Kaifa/Petroleum Exploration and Development, 2021, 48 (01): : 148 - 155
  • [4] Research on Surfactant Flooding in High-temperature and High-salinity Reservoir for Enhanced Oil Recovery
    Zhou, Ming
    Zhao, Jinzhou
    Wang, Xu
    Yang, Yan
    TENSIDE SURFACTANTS DETERGENTS, 2013, 50 (03) : 175 - 181
  • [5] Enhanced Oil Recovery (EOR) by Combined Low Salinity Water/Polymer Flooding
    Shiran, Behruz Shaker
    Skauge, Arne
    ENERGY & FUELS, 2013, 27 (03) : 1223 - 1235
  • [6] Reservoir simulation study of enhanced oil recovery by sequential polymer flooding method
    Sidiq H.
    Abdulsalam V.
    Nabaz Z.
    Advances in Geo-Energy Research, 2019, 3 (02): : 115 - 121
  • [7] Efficiency of enhanced oil recovery using polymer-augmented low salinity flooding
    Almansour A.O.
    AlQuraishi A.A.
    AlHussinan S.N.
    AlYami H.Q.
    Journal of Petroleum Exploration and Production Technology, 2017, 7 (4) : 1149 - 1158
  • [8] Experimental Study on Enhanced Oil Recovery by Low Salinity Water Flooding on the Fractured Dolomite Reservoir
    Rajaee, Ebrahimzadeh Shima
    Gerami, Shahab
    Safekordi, Ali Akbar
    Bahramian, Ali Reza
    Ghazvini, Ganjeh Mostafa
    IRANIAN JOURNAL OF CHEMISTRY & CHEMICAL ENGINEERING-INTERNATIONAL ENGLISH EDITION, 2021, 40 (05): : 1703 - 1719
  • [9] Surfactant Enhanced Oil Recovery in a High Temperature and High Salinity Carbonate Reservoir
    Ge, Jijiang
    Wang, Yang
    JOURNAL OF SURFACTANTS AND DETERGENTS, 2015, 18 (06) : 1043 - 1050
  • [10] Capsule polymer flooding for enhanced oil recovery
    HOU Jian
    LIU Yongsheng
    WEI Bei
    CAO Xulong
    SUN Jianfang
    DU Qingjun
    SONG Kaoping
    YUAN Fuqing
    SUN Pengxiao
    JI Yanfeng
    ZHAO Fangjian
    LIU Ruixin
    Petroleum Exploration and Development, 2024, 51 (05) : 1261 - 1270