CONTROLLABILITY PROPERTIES FROM THE EXTERIOR UNDER POSITIVITY CONSTRAINTS FOR A 1-D FRACTIONAL HEAT EQUATION

被引:0
|
作者
Antil, Harbir [1 ]
Biccari, Umberto [2 ]
Ponce, Rodrigo [3 ]
Warma, Mahamadi [1 ]
Zamorano, Sebastian [4 ]
机构
[1] George Mason Univ, Ctr Math & Artificial Intelligence CMAI, Fairfax, VA 22030 USA
[2] Univ Deusto, Fdn Deusto, Fac Ingn, Chair Computat Math, Ave Univ 24, Bilbao 48007, Spain
[3] Univ Talca, Inst Matemat, Casilla 747, Talca, Chile
[4] Univ Santiago Chile, Fac Ciencia, Dept Matemat & Ciencia Computac, Casilla 307,Correo 2, Santiago, Chile
来源
关键词
Fractional heat equation; exterior control; null controllability; positivity constraints; minimal controllability time; APPROXIMATE CONTROLLABILITY; POPULATION-DYNAMICS; BROWNIAN MOTIONS; TIME; BOUNDARY; WAVES;
D O I
10.3934/eect.2024010
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study the controllability to trajectories, under positivity constraints on the control or the state, of a one-dimensional heat equation involving the fractional Laplace operator (-partial derivative(2)(x))s (with 0 < s < 1) on the interval (-1,1). Our control function is localized in an open set O in the exterior of (-1,1), that is, O subset of R\(-1,1)). We show that there exists a minimal (strictly positive) time T-min such that the fractional heat dynamics can be controlled from any initial datum in L-2(-1,1) to a positive trajectory through the action of an exterior positive control, if and only if 1/2 < s < 1. In addition, we prove that at this minimal controllability time, the constrained controllability is achieved by means of a control that belongs to a certain space of Radon measures. Finally, we provide several numerical illustrations that confirm our theoretical results.
引用
收藏
页码:893 / 924
页数:32
相关论文
共 50 条
  • [1] CONTROLLABILITY OF THE ONE-DIMENSIONAL FRACTIONAL HEAT EQUATION UNDER POSITIVITY CONSTRAINTS
    Biccari, Umberto
    Warma, Mahamadi
    Zuazua, Enrique
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2020, 19 (04) : 1949 - 1978
  • [2] CONTROLLABILITY UNDER POSITIVITY CONSTRAINTS OF SEMILINEAR HEAT EQUATIONS
    Pighin, Dario
    Zuazua, Enrique
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2018, 8 (3-4) : 935 - 964
  • [3] Null controllability of the 1-d heat equation as limit of the controllability of dissipative wave equations
    Lopez, A
    Zuazua, E
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1998, 327 (08): : 753 - 758
  • [4] Exterior controllability properties for a fractional Moore–Gibson–Thompson equation
    Carlos Lizama
    Mahamadi Warma
    Sebastián Zamorano
    Fractional Calculus and Applied Analysis, 2022, 25 : 887 - 923
  • [5] NULL CONTROLLABILITY WITH CONSTRAINTS ON THE STATE FOR THE 1-D KURAMOTO-SIVASHINSKY EQUATION
    Gao, Peng
    EVOLUTION EQUATIONS AND CONTROL THEORY, 2015, 4 (03): : 281 - 296
  • [6] Local controllability of a 1-D Schrodinger equation
    Beauchard, K
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (07): : 851 - 956
  • [7] Qualitative properties for the 1-D impulsive wave equation: controllability and observability
    Ben Aissa, Akram
    Zouhair, Walid
    QUAESTIONES MATHEMATICAE, 2022, 45 (08) : 1229 - 1241
  • [8] ON THE GLOBAL CONTROLLABILITY OF THE 1-D BOUSSINESQ EQUATION
    Jammazi, Chaker
    Loucif, Souhila
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (06): : 1499 - 1523
  • [9] On the controllability of the 1-D isentropic Euler equation
    Glass, Olivier
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2007, 9 (03) : 427 - 486
  • [10] Exterior controllability properties for a fractional Moore-Gibson-Thompson equation
    Lizama, Carlos
    Warma, Mahamadi
    Zamorano, Sebastian
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2022, 25 (03) : 887 - 923