Sample-efficient multi-agent reinforcement learning with masked reconstruction

被引:0
|
作者
Kim, Jung In [1 ]
Lee, Young Jae [1 ]
Heo, Jongkook [1 ]
Park, Jinhyeok [1 ]
Kim, Jaehoon [1 ]
Lim, Sae Rin [1 ]
Jeong, Jinyong [1 ]
Kim, Seoung Bum [1 ]
机构
[1] Korea Univ, Sch Ind & Management Engn, Seoul, South Korea
来源
PLOS ONE | 2023年 / 18卷 / 09期
关键词
D O I
10.1371/journal.pone.0291545
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Deep reinforcement learning (DRL) is a powerful approach that combines reinforcement learning (RL) and deep learning to address complex decision-making problems in high-dimensional environments. Although DRL has been remarkably successful, its low sample efficiency necessitates extensive training times and large amounts of data to learn optimal policies. These limitations are more pronounced in the context of multi-agent reinforcement learning (MARL). To address these limitations, various studies have been conducted to improve DRL. In this study, we propose an approach that combines a masked reconstruction task with QMIX (M-QMIX). By introducing a masked reconstruction task as an auxiliary task, we aim to achieve enhanced sample efficiency-a fundamental limitation of RL in multi-agent systems. Experiments were conducted using the StarCraft II micromanagement benchmark to validate the effectiveness of the proposed method. We used 11 scenarios comprising five easy, three hard, and three very hard scenarios. We particularly focused on using a limited number of time steps for each scenario to demonstrate the improved sample efficiency. Compared to QMIX, the proposed method is superior in eight of the 11 scenarios. These results provide strong evidence that the proposed method is more sample-efficient than QMIX, demonstrating that it effectively addresses the limitations of DRL in multi-agent systems.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Sample-Efficient Multi-Agent Reinforcement Learning with Demonstrations for Flocking Control
    Qiu, Yunbo
    Zhan, Yuzhu
    Jin, Yue
    Wang, Jian
    Zhang, Xudong
    2022 IEEE 96TH VEHICULAR TECHNOLOGY CONFERENCE (VTC2022-FALL), 2022,
  • [2] TIMAR: Transition-informed representation for sample-efficient multi-agent reinforcement learning
    Feng, Mingxiao
    Yang, Yaodong
    Zhou, Wengang
    Li, Houqiang
    Neural Networks, 2025, 184
  • [3] A Sample Efficient Multi-Agent Approach to Continuous Reinforcement Learning
    Corcoran, Diarmuid
    Kreuger, Per
    Boman, Magnus
    2022 18TH INTERNATIONAL CONFERENCE ON NETWORK AND SERVICE MANAGEMENT (CNSM 2022): INTELLIGENT MANAGEMENT OF DISRUPTIVE NETWORK TECHNOLOGIES AND SERVICES, 2022, : 338 - 344
  • [4] Sample-Efficient Reinforcement Learning of Undercomplete POMDPs
    Jin, Chi
    Kakade, Sham M.
    Krishnamurthy, Akshay
    Liu, Qinghua
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [5] Sample-efficient Reinforcement Learning in Robotic Table Tennis
    Tebbe, Jonas
    Krauch, Lukas
    Gao, Yapeng
    Zell, Andreas
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 4171 - 4178
  • [6] Sample-efficient reinforcement learning for CERN accelerator control
    Kain, Verena
    Hirlander, Simon
    Goddard, Brennan
    Velotti, Francesco Maria
    Porta, Giovanni Zevi Della
    Bruchon, Niky
    Valentino, Gianluca
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2020, 23 (12)
  • [7] A New Sample-Efficient PAC Reinforcement Learning Algorithm
    Zehfroosh, Ashkan
    Tanner, Herbert G.
    2020 28TH MEDITERRANEAN CONFERENCE ON CONTROL AND AUTOMATION (MED), 2020, : 788 - 793
  • [8] Conditional Abstraction Trees for Sample-Efficient Reinforcement Learning
    Dadvar, Mehdi
    Nayyar, Rashmeet Kaur
    Srivastava, Siddharth
    UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, 2023, 216 : 485 - 495
  • [9] Multi-Agent Reinforcement Learning
    Stankovic, Milos
    2016 13TH SYMPOSIUM ON NEURAL NETWORKS AND APPLICATIONS (NEUREL), 2016, : 43 - 43
  • [10] Safe and Sample-Efficient Reinforcement Learning Algorithms for Factored Environments
    Simao, Thiago D.
    PROCEEDINGS OF THE TWENTY-EIGHTH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2019, : 6460 - 6461