Self-healing flexible strain sensor fabricated through 3D printing template sacrifice for motion monitoring with enhanced healing and mechanical performance

被引:0
|
作者
Yan, Hui [1 ]
Liu, Shuofu [1 ]
Wen, Nan [2 ]
Yin, Jiyuan [1 ]
Jiang, Hongyuan [1 ]
机构
[1] Harbin Inst Technol, Sch Mechatron Engn, Harbin 150000, Heilongjiang, Peoples R China
[2] Semicond Mfg Int Corp, 18 Wenchang Ave, Beijing 100176, Peoples R China
关键词
self-healing polymers; flexible performance; 3D printing sensor; motion monitoring; DESIGN;
D O I
10.1088/1361-6528/ad22a7
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
With the advancements in flexible materials and information technology, flexible sensors are becoming increasingly pervasive in various aspects of life and production. They hold immense potential for further development in areas such as motion detection, electronic skin, soft robots, and wearable devices. Aminopropyl-terminated polydimethylsiloxane (PDMS) was used as the raw material, while a diisocyanate reagent served as the cross-linking agent for the polymerization reaction, which involved the introduction of ureido groups, containing N-H and C=O bonds, into the long siloxane chain. The dynamic hydrogen bonding between the clusters completes the self-healing of the material. Using 1-[3-(trimethoxysilyl)propyl]urea as a grafting agent, the urea groups are introduced into graphene oxide and carbon nanotubes (CNTs) as conductive fillers. Subsequently, a flexible polymer is used as the substrate to prepare conductive flexible self-healing composites. By controlling the amount of conductive fillers, flexible strain materials with varying sensitivities are obtained. Design the structure of the flexible strain sensor using three-dimensional (3D) modeling software with deposition printing method.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Flexible strain sensor with self-healing function for human motion monitoring
    Ji, Shanpeng
    Guo, Ping
    Ruan, Diqing
    Wu, Huaping
    Cheng, Lin
    Liu, Aiping
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (02)
  • [2] A highly stretchable and intrinsically self-healing strain sensor produced by 3D printing
    Guo, Binbin
    Ji, Xinzhu
    Chen, Xiaoteng
    Li, Gang
    Lu, Yongguang
    Bai, Jiaming
    VIRTUAL AND PHYSICAL PROTOTYPING, 2020, 15 (S1) : 520 - 531
  • [3] Self-Healing Hydrogels as Flexible Sensor for Human Motion Monitoring
    Tang, Huicheng
    Kang, Beibei
    Li, Yueyun
    Zhao, Zengdian
    Song, Shasha
    CHEMISTRYSELECT, 2021, 6 (40): : 11130 - 11136
  • [4] Self-Healing Materials for 3D Printing
    Andreu, Alberto
    Lee, Haeseung
    Kang, Jiheong
    Yoon, Yong-Jin
    ADVANCED FUNCTIONAL MATERIALS, 2024, 34 (30)
  • [5] 3D Printing of Self-Healing Materials
    Roppolo, Ignazio
    Caprioli, Matteo
    Pirri, Candido F.
    Magdassi, Shlomo
    ADVANCED MATERIALS, 2024, 36 (09)
  • [6] Ultrastretchable and Self-Healing Double-Network Hydrogel for 3D Printing and Strain Sensor
    Liu, Sijun
    Li, Lin
    ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (31) : 26429 - 26437
  • [7] Self-healing, photoluminescent elastomers for 3D printing fabrication of flexible sensors
    Luo, Chunyi
    Luo, Xin
    Liu, Danyang
    Ma, Guangmeng
    Zhang, Longfei
    Fu, Jianglin
    Li, Yu
    Guo, Fawei
    Zhang, Mingtao
    Long, Yu
    CHEMICAL ENGINEERING JOURNAL, 2024, 501
  • [8] 3D Printing of dynamic tissue scaffold by combining self-healing hydrogel and self-healing ferrogel
    Choi, Youngtae
    Kim, Choonggu
    Kim, Hyun Seung
    Moon, Changwook
    Lee, Kuen Yong
    COLLOIDS AND SURFACES B-BIOINTERFACES, 2021, 208
  • [9] 3D printing of self-healing and degradable conductive ionoelastomers for customized flexible sensors
    Luo, Xin
    Wu, Han
    Wang, Chengyun
    Jin, Qingxin
    Luo, Chunyi
    Ma, Guangmeng
    Guo, Wang
    Long, Yu
    CHEMICAL ENGINEERING JOURNAL, 2024, 483
  • [10] Stereolithographic 3D printing of extrinsically self-healing composites
    Sanders, Polly
    Young, Adam J.
    Qin, Yang
    Fancey, Kevin S.
    Reithofer, Michael R.
    Guillet-Nicolas, Remy
    Kleitz, Freddy
    Pamme, Nicole
    Chin, Jia Min
    SCIENTIFIC REPORTS, 2019, 9 (1)