THE HOMOGENEOUS q-DIFFERENCE OPERATOR AND THE RELATED POLYNOMIALS

被引:0
|
作者
Arif, M. A. [1 ]
Saad, H. L. [2 ]
机构
[1] Basrah Univ, Coll Sci, Dept Math, Basra, Iraq
[2] Basrah Univ, Coll Educ Pure Sci, Dept Math, Basra, Iraq
来源
TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS | 2023年 / 13卷 / 04期
关键词
the homogeneous q-difference operator; the q(-1)-Rogers-Szegopolynomial; the generating function; the Rogers formula; the invers linearization formula; the Mehler's formula; IDENTITIES;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We create the homogeneous q-difference operator E(a, b; theta) as an extension of the exponential operator E(b theta). A new polynomials hn(a, b, x|q(-1)) are defined as an extension of the q(-1)-Rogers-Szegopolynomial h(n)(a, b|q(-1)). We provide an operator proof of the generating function and its extension, Rogers formula and the invers linearization formula, and Mehler's formula for the polynomials h(n)(a, b|q(-1)). The generating function and its extension, Rogers formula and the invers linearization formula, and Mehler's formula for the polynomials h(n)(a, b|q(-1)) are deduced by giving special values to parameters of a new polynomial h(n)(a, b, x|q(-1)).
引用
收藏
页码:1537 / 1550
页数:14
相关论文
共 50 条
  • [1] The homogeneous q-difference operator
    Chen, WYC
    Fu, AM
    Zhang, BY
    ADVANCES IN APPLIED MATHEMATICS, 2003, 31 (04) : 659 - 668
  • [2] Another homogeneous q-difference operator
    Saad, Husam L.
    Sukhi, Abbas A.
    APPLIED MATHEMATICS AND COMPUTATION, 2010, 215 (12) : 4332 - 4339
  • [3] A NOTE ON q-DIFFERENCE OPERATOR AND RELATED LIMIT DIRECTION
    Li, Yezhou
    Song, Ningfang
    ACTA MATHEMATICA SCIENTIA, 2018, 38 (06) : 1678 - 1688
  • [4] Some homogeneous q-difference operators and the associated generalized Hahn Polynomials
    Srivastava H.M.
    Arjika S.
    Kelil A.S.
    Applied Set-Valued Analysis and Optimization, 2019, 1 (02): : 187 - 201
  • [5] ON p, q-DIFFERENCE OPERATOR
    Corcino, Roberto B.
    Montero, Charles B.
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2012, 49 (03) : 537 - 547
  • [6] Value distribution of difference and q-difference polynomials
    Nan Li
    Lianzhong Yang
    Advances in Difference Equations, 2013
  • [7] Entire solutions of q-difference equations and value distribution of q-difference polynomials
    Zhang, Jilong
    Yang, Lianzhong
    ANNALES POLONICI MATHEMATICI, 2013, 109 (01) : 39 - 46
  • [8] Value distribution of difference and q-difference polynomials
    Li, Nan
    Yang, Lianzhong
    ADVANCES IN DIFFERENCE EQUATIONS, 2013,
  • [9] A CLUNIE LEMMA FOR DIFFERENCE AND q-DIFFERENCE POLYNOMIALS
    Huang, Zhi-Bo
    Chen, Zong-Xuan
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) : 23 - 32
  • [10] Clunie theorems for difference and q-difference polynomials
    Laine, Ilpo
    Yang, Chung-Chun
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2007, 76 : 556 - 566