Variational Convolutional Autoencoders for Anomaly Detection in Scanning Transmission Electron Microscopy

被引:11
|
作者
Prifti, Enea [1 ]
Buban, James P. [1 ]
Thind, Arashdeep Singh [1 ]
Klie, Robert F. [1 ]
机构
[1] Univ Illinois, Dept Phys, 845 W Taylor St, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
anomaly detection; convolutional neural networks; electron microscopy; machine learning; variational convolutional autoencoders; VIBRATIONAL SPECTROSCOPY; GRAIN-BOUNDARIES; IDENTIFICATION; SRTIO3;
D O I
10.1002/smll.202205977
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Identifying point defects and other structural anomalies using scanning transmission electron microscopy (STEM) is important to understand a material's properties caused by the disruption of the regular pattern of crystal lattice. Due to improvements in instrumentation stability and electron optics, atomic-resolution images with a field of view of several hundred nanometers can now be routinely acquired at 1-10 Hz frame rates and such data, which often contain thousands of atomic columns, need to be analyzed. To date, image analysis is performed largely manually, but recent developments in computer vision (CV) and machine learning (ML) now enable automated analysis of atomic structures and associated defects. Here, the authors report on how a Convolutional Variational Autoencoder (CVAE) can be utilized to detect structural anomalies in atomic-resolution STEM images. Specifically, the training set is limited to perfect crystal images , and the performance of a CVAE in differentiating between single-crystal bulk data or point defects is demonstrated. It is found that the CVAE can reproduce the perfect crystal data but not the defect input data. The disagreesments between the CVAE-predicted data for defects allows for a clear and automatic distinction and differentiation of several point defect types.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Yu, Qien
    Kavitha, Muthu Subash
    Kurita, Takio
    APPLIED INTELLIGENCE, 2021, 51 (06) : 3241 - 3254
  • [2] Mixture of experts with convolutional and variational autoencoders for anomaly detection
    Qien Yu
    Muthu Subash Kavitha
    Takio Kurita
    Applied Intelligence, 2021, 51 : 3241 - 3254
  • [3] Variational Autoencoders for Anomaly Detection in Respiratory Sounds
    Cozzatti, Michele
    Simonetta, Federico
    Ntalampiras, Stavros
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 333 - 345
  • [4] Ultrasound Anomaly Detection Based on Variational Autoencoders
    Milkovic, Fran
    Filipovic, Branimir
    Subasic, Marko
    Petkovic, Tomislav
    Loncaric, Sven
    Budimir, Marko
    PROCEEDINGS OF THE 12TH INTERNATIONAL SYMPOSIUM ON IMAGE AND SIGNAL PROCESSING AND ANALYSIS (ISPA 2021), 2021, : 225 - 229
  • [5] Convolutional AutoEncoders for Anomaly Detection in Semiconductor Manufacturing
    Gorman, Mark
    Ding, Xuemei
    Maguire, Liam
    Coyle, Damien
    2023 31ST IRISH CONFERENCE ON ARTIFICIAL INTELLIGENCE AND COGNITIVE SCIENCE, AICS, 2023,
  • [6] Anomaly Detection for HTTP Using Convolutional Autoencoders
    Park, Seungyoung
    Kim, Myungjin
    Lee, Seokwoo
    IEEE ACCESS, 2018, 6 : 70884 - 70901
  • [7] Anomaly Detection in Distributed Systems via Variational Autoencoders
    Qian, Yun
    Ying, Shi
    Wang, Bingming
    2020 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN, AND CYBERNETICS (SMC), 2020, : 2822 - 2829
  • [8] Anomaly detection on household appliances based on variational autoencoders
    Castangia, Marco
    Sappa, Riccardo
    Girmay, Awet Abraha
    Camarda, Christian
    Macii, Enrico
    Patti, Edoardo
    SUSTAINABLE ENERGY GRIDS & NETWORKS, 2022, 32
  • [9] Anomaly Detection of Disconnects Using SSTDR and Variational Autoencoders
    Edun, Ayobami S.
    LaFlamme, Cody
    Kingston, Samuel R.
    Furse, Cynthia M.
    Scarpulla, Michael A.
    Harley, Joel B.
    IEEE SENSORS JOURNAL, 2022, 22 (04) : 3484 - 3492
  • [10] Anomaly Detection with Convolutional Autoencoders for Fingerprint Presentation Attack Detection
    Kolberg J.
    Grimmer M.
    Gomez-Barrero M.
    Busch C.
    IEEE Transactions on Biometrics, Behavior, and Identity Science, 2021, 3 (02): : 190 - 202