On b-acyclic chromatic number of a graph

被引:0
|
作者
Anholcer, Marcin [1 ]
Cichacz, Sylwia [2 ]
Peterin, Iztok [3 ]
机构
[1] Poznan Univ Econ & Business, Inst Informat & Quantitat Econ, Al Niepodleglosci 10, PL-61875 Poznan, Poland
[2] AGH Univ Sci & Technol, Fac Appl Math, Al Mickiewicza 30, PL-30059 Krakow, Poland
[3] Univ Maribor, Fac Elect Engn & Comp Sci, Koroska 46, Maribor 2000, Slovenia
来源
COMPUTATIONAL & APPLIED MATHEMATICS | 2023年 / 42卷 / 01期
关键词
Acyclic b-chromatic number; Acyclic coloring; b-Coloring; MAXIMUM DISJOINT PATHS; COLORINGS; COMPLEXITY; GRUNDY;
D O I
10.1007/s40314-022-02156-y
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let G be a graph. We introduce the acyclic b-chromatic number of G as an analogue to the b-chromatic number of G. An acyclic coloring of a graph G is a map c : V (G) -> {1, ... , k} such that c(u) &NOTEQUexpressionL; c(v) for any uv is an element of E(G) and the induced subgraph on vertices of any two colors i, j is an element of {1, ... , k} induces a forest. On the set of all acyclic colorings of G we define a relation whose transitive closure is a strict partial order. The minimum cardinality of its minimal element is then the acyclic chromatic number A(G) of G and the maximum cardinality of its minimal element is the acyclic b-chromatic number A(b)(G) of G. We present several properties of A(b)(G). In particular, we derive A(b)(G) for several known graph families, derive some bounds for A(b)(G), compare A(b)(G) with some other parameters and generalize some influential tools from b-colorings to acyclic b-colorings.
引用
收藏
页数:20
相关论文
共 50 条
  • [1] On b-acyclic chromatic number of a graph
    Marcin Anholcer
    Sylwia Cichacz
    Iztok Peterin
    [J]. Computational and Applied Mathematics, 2023, 42
  • [2] Bounds on the chromatic polynomial and on the number of acyclic orientations of a graph
    Kahale, N
    Schulman, LJ
    [J]. COMBINATORICA, 1996, 16 (03) : 383 - 397
  • [3] The acyclic colouring, triangle number and chromatic polynomial of a graph
    Dong, FM
    Koh, KM
    [J]. ALGEBRAS AND COMBINATORICS, 1999, : 217 - 236
  • [4] ACYCLIC GRAPH-COLORING AND THE COMPLEXITY OF THE STAR CHROMATIC NUMBER
    GUICHARD, DR
    [J]. JOURNAL OF GRAPH THEORY, 1993, 17 (02) : 129 - 134
  • [5] The b-chromatic number of a graph
    Irving, RW
    Manlove, DF
    [J]. DISCRETE APPLIED MATHEMATICS, 1999, 91 (1-3) : 127 - 141
  • [6] An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph
    Xin-sheng Liu~1 Ming-qiang An~2 Yang Gao~1 1 College of Mathematics and Information Science
    [J]. Acta Mathematicae Applicatae Sinica, 2009, 25 (01) : 137 - 140
  • [7] An Upper Bound for the Adjacent Vertex Distinguishing Acyclic Edge Chromatic Number of a Graph
    Liu, Xin-sheng
    An, Ming-qiang
    Gao, Yang
    [J]. ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2009, 25 (01): : 137 - 140
  • [8] An upper bound for the adjacent vertex distinguishing acyclic edge chromatic number of a graph
    Xin-sheng Liu
    Ming-qiang An
    Yang Gao
    [J]. Acta Mathematicae Applicatae Sinica, English Series, 2009, 25 : 137 - 140
  • [9] On the fractional chromatic number, the chromatic number, and graph products
    Klavzar, S
    Yeh, HG
    [J]. DISCRETE MATHEMATICS, 2002, 247 (1-3) : 235 - 242
  • [10] On b-chromatic Number of Prism Graph Families
    Ansari, Nadeem
    Chandel, R. S.
    Jamal, Rizwana
    [J]. APPLICATIONS AND APPLIED MATHEMATICS-AN INTERNATIONAL JOURNAL, 2018, 13 (01): : 286 - 295