Periodic solutions for a second-order partial difference equation

被引:9
|
作者
Wang, Shaohong [1 ,2 ]
Zhou, Zhan [1 ,2 ]
机构
[1] Guangzhou Univ, Sch Math & Informat Sci, Guangzhou 510006, Peoples R China
[2] Guangzhou Univ, Guangzhou Ctr Appl Math, Guangzhou 510006, Peoples R China
基金
中国国家自然科学基金;
关键词
Partial difference equation; Periodic solution; Critical point theory; Superlinear; Sublinear; Asymptotically linear; BOUNDARY-VALUE PROBLEM; SINH-POISSON EQUATION; MULTIPLE SOLUTIONS; HOMOCLINIC SOLUTIONS; POSITIVE SOLUTIONS; DISCRETE; EXISTENCE; ORBITS; ARRAYS;
D O I
10.1007/s12190-022-01769-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A second-order partial difference equation is considered in this paper. By applying critical point theory, we not only establish a series of sufficient conditions on the existence of periodic solutions when the nonlinearity respectively is superlinear, sublinear and asymptotically linear, but also give sufficient conditions on the nonexistence of nontrivial periodic solutions. Finally, we present some examples to illustrate our main results.
引用
收藏
页码:731 / 752
页数:22
相关论文
共 50 条
  • [1] Periodic solutions for a second-order partial difference equation
    Shaohong Wang
    Zhan Zhou
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 731 - 752
  • [2] Multiple nontrivial periodic solutions to a second-order partial difference equation
    Long, Yuhua
    Li, Dan
    [J]. ELECTRONIC RESEARCH ARCHIVE, 2023, 31 (03): : 1596 - 1612
  • [3] Multiple periodic solutions of a second-order partial difference equation involving p-Laplacian
    Yuhua Long
    Dan Li
    [J]. Journal of Applied Mathematics and Computing, 2023, 69 : 3489 - 3508
  • [4] Multiple periodic solutions of a second-order partial difference equation involving p-Laplacian
    Long, Yuhua
    Li, Dan
    [J]. JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2023, 69 (04) : 3489 - 3508
  • [5] On the behaviour of the solutions of a second-order difference equation
    Gutnik, Leonid
    Stevic, Stevo
    [J]. DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2007, 2007
  • [6] Periodic solutions of nonlinear second-order difference equations
    Jesús Rodriguez
    Debra Lynn Etheridge
    [J]. Advances in Difference Equations, 2005
  • [7] Periodic solutions of nonlinear second-order difference equations
    Rodriguez, Jesus
    Etheridge, Debra Lynn
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) : 173 - 192
  • [8] Periodic solutions for nonlinear second-order difference equations
    Ma, Manjun
    Tang, Hengsheng
    Luo, Wei
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2007, 184 (02) : 685 - 694
  • [9] On Periodic Solutions of One Second-Order Differential Equation
    Demidenko G.V.
    Dulepova A.V.
    [J]. Journal of Mathematical Sciences, 2024, 278 (2) : 314 - 327
  • [10] On Periodic Solutions of a Second-Order Ordinary Differential Equation
    Abramov V.V.
    Liskina E.Y.
    [J]. Journal of Mathematical Sciences, 2024, 281 (3) : 353 - 358