Near-optimal quantum circuit construction via Cartan decomposition

被引:3
|
作者
Mansky, Maximilian Balthasar [1 ]
Castillo, Santiago Londono [1 ]
Puigvert, Victor Ramos [1 ]
Linnhoff-Popien, Claudia [1 ]
机构
[1] Ludwig Maximilians Univ Munchen, Dept Informat, D-80538 Munich, Germany
关键词
All Open Access; Hybrid Gold; Green;
D O I
10.1103/PhysRevA.108.052607
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We show the applicability of the Cartan decomposition of Lie algebras to quantum circuits. This approach can be used to synthesize circuits that can efficiently implement any desired unitary operation. Our method finds explicit quantum circuit representations of the algebraic generators of the relevant Lie algebras allowing the direct implementation of a Cartan decomposition on a quantum computer. The construction is recursive and allows us to expand any circuit down to generators and rotation matrices on individual qubits, where through our recursive algorithm we find that the generators themselves can be expressed with controlled-NOT (CNOT) and SWAP gates explicitly. Our approach is independent of the standard CNOT implementation and can be easily adapted to other cross-qubit circuit elements. In addition to its versatility, we also achieve near-optimal counts when working with CNOT gates, achieving an asymptotic CNOT cost of 21164n for n qubits.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Fast Near-Optimal Heterogeneous Task Allocation via Flow Decomposition
    Solovey, Kiril
    Bandyopadhyay, Saptarshi
    Rossi, Federico
    Wolf, Michael T.
    Pavone, Marco
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 9117 - 9123
  • [2] Near-optimal circuit mapping with reduced search paths on IBM quantum architectures
    Chhangte, Lalengmawia
    Chakrabarty, Alok
    MICROPROCESSORS AND MICROSYSTEMS, 2022, 94
  • [3] NEAR-OPTIMAL ORDERING OF ELECTRONIC CIRCUIT EQUATIONS
    SILVERBERG, M
    IEEE TRANSACTIONS ON COMPUTERS, 1968, C 17 (12) : 1173 - +
  • [4] Sampling diverse near-optimal solutions via algorithmic quantum annealing
    Mohseni, Masoud
    Rams, Marek M.
    Isakov, Sergei, V
    Eppens, Daniel
    Pielawa, Susanne
    Strumpfer, Johan
    Boixo, Sergio
    Neven, Hartmut
    PHYSICAL REVIEW E, 2023, 108 (06)
  • [5] Near-Optimal Hybrid Processing for Massive MIMO Systems via Matrix Decomposition
    Ni, Weiheng
    Dong, Xiaodai
    Lu, Wu-Sheng
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2017, 65 (15) : 3922 - 3933
  • [6] Near-optimal quantum circuit for Grover's unstructured search using a transverse field
    Jiang, Zhang
    Rieffel, Eleanor G.
    Wang, Zhihui
    PHYSICAL REVIEW A, 2017, 95 (06)
  • [7] Near-Optimal Quantum Algorithms for String Problems
    Akmal, Shyan
    Jin, Ce
    ALGORITHMICA, 2023, 85 (08) : 2260 - 2317
  • [8] Near-Optimal Extractors Against Quantum Storage
    De, Anindya
    Vidick, Thomas
    STOC 2010: PROCEEDINGS OF THE 2010 ACM SYMPOSIUM ON THEORY OF COMPUTING, 2010, : 161 - 170
  • [9] Near-optimal quantum tomography: estimators and bounds
    Kueng, Richard
    Ferrie, Christopher
    NEW JOURNAL OF PHYSICS, 2015, 17
  • [10] Near-Optimal Quantum Algorithms for String Problems
    Akmal, Shyan
    Jin, Ce
    PROCEEDINGS OF THE 2022 ANNUAL ACM-SIAM SYMPOSIUM ON DISCRETE ALGORITHMS, SODA, 2022, : 2791 - 2832