Some new families of generalized k-Leonardo and Gaussian Leonardo Numbers

被引:3
|
作者
Prasad, Kalika [1 ]
Mohanty, Ritanjali [1 ]
Kumari, Munesh [1 ]
Mahato, Hrishikesh [1 ]
机构
[1] Cent Univ Jharkhand, Dept Math, Ranchi 835205, Jharkhand, India
关键词
k-Leonardo numbers; Gaussian Leonardo numbers; k-Gaussian Leonardo numbers; Binet Formula; Generating functions; Partial sum; FIBONACCI;
D O I
10.22049/CCO.2023.28236.1485
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce a new family of the generalized k-Leonardo numbers and study their properties. We investigate the Gaussian Leonardo numbers and associated new families of these Gaussian forms. We obtain combinatorial identities like Binet formula, Cassini's identity, partial sum, etc. in the closed form. Moreover, we give various generating and exponential generating functions.
引用
收藏
页码:539 / 553
页数:15
相关论文
共 50 条
  • [1] On Gaussian Leonardo numbers
    Tasci, Dursun
    CONTRIBUTIONS TO MATHEMATICS, 2023, 7 : 34 - 40
  • [2] GAUSSIAN LEONARDO POLYNOMIALS AND APPLICATIONS OF LEONARDO NUMBERS TO CODING THEORY
    Ozcevik, Selime Beyza
    Dertli, Abdullah
    JOURNAL OF SCIENCE AND ARTS, 2023, (04): : 897 - 908
  • [3] The Sequences of the Hyperbolic k-Perrin and k-Leonardo Quaternions
    Mangueira, M.
    Vieira, R.
    Alves, F.
    Catarino, P.
    JOURNAL OF MATHEMATICAL EXTENSION, 2023, 17 (04)
  • [4] NOTE ON THE GENERALIZED LEONARDO NUMBERS
    Kuhapatanakul, Kantaphon
    FIBONACCI QUARTERLY, 2024, 62 (03): : 201 - 207
  • [5] On Hybrid Numbers with Gaussian Leonardo Coefficients
    Kara, Nagihan
    Yilmaz, Fatih
    MATHEMATICS, 2023, 11 (06)
  • [6] Notes on generalized and extended Leonardo numbers
    Shannon, Anthony G.
    Shiue, Peter J. -S.
    Huang, Shen C.
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (04) : 752 - 773
  • [7] Generalized Fibonacci-Leonardo numbers
    Bednarz, Urszula
    Wolowiec-Musial, Malgorzata
    JOURNAL OF DIFFERENCE EQUATIONS AND APPLICATIONS, 2024, 30 (01) : 111 - 121
  • [8] A New Class of Leonardo Hybrid Numbers and Some Remarks on Leonardo Quaternions over Finite Fields
    Tan, Elif
    Savin, Diana
    Yilmaz, Semih
    MATHEMATICS, 2023, 11 (22)
  • [9] Polynomials whose coefficients are generalized Leonardo numbers
    Shattuck, Mark
    MATHEMATICA SLOVACA, 2024, 74 (02) : 299 - 312
  • [10] Combinatorial proofs of identities for the generalized Leonardo numbers
    Shattuck, Mark
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2022, 28 (04) : 778 - 790