Invertible matrices over a class of semirings

被引:2
|
作者
Dolzan, David [1 ]
机构
[1] Univ Ljubljana, Fac Math & Phys, Dept Math, Jadranska 19, SI-1000 Ljubljana, Slovenia
关键词
Semiring; invertible matrix; commuting graph; idempotent; nilpotent; COMMUTING GRAPHS; DIAMETERS;
D O I
10.1142/S0219498823500792
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We characterize the invertible matrices over a class of semirings such that the set of additively invertible elements is equal to the set of nilpotent elements. We achieve this by studying the liftings of the orthogonal sums of elements that are "almost idempotent" to those that are idempotent. Finally, we show an application of the obtained results to calculate the diameter of the commuting graph of the group of invertible matrices over the semirings in question.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] On invertible matrices over commutative semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2013, 61 (06): : 710 - 724
  • [2] On strongly invertible matrices over semirings
    Tan, Yi-Jia
    LINEAR & MULTILINEAR ALGEBRA, 2018, 66 (12): : 2501 - 2511
  • [3] Note on invertible matrices over commutative semirings
    Liao, Ya-lin
    Wang, Xue-ping
    LINEAR & MULTILINEAR ALGEBRA, 2016, 64 (03): : 477 - 483
  • [4] Invertible Matrices over Finite Additively Idempotent Semirings
    Andreas Kendziorra
    Stefan E. Schmidt
    Jens Zumbrägel
    Semigroup Forum, 2013, 86 : 525 - 536
  • [5] e-INVERTIBLE MATRICES OVER COMMUTATIVE SEMIRINGS
    Zhang, Lixia
    Shao, Yong
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2018, 49 (02): : 227 - 238
  • [6] Some results concerning invertible matrices over semirings
    Sombatboriboon, Surachai
    Mora, Winita
    Kemprasit, Yupaporn
    SCIENCEASIA, 2011, 37 (02): : 130 - 135
  • [7] Invertible Matrices over Finite Additively Idempotent Semirings
    Kendziorra, Andreas
    Schmidt, Stefan E.
    Zumbraegel, Jens
    SEMIGROUP FORUM, 2013, 86 (03) : 525 - 536
  • [8] e-Invertible Matrices Over Commutative Semirings
    Lixia Zhang
    Yong Shao
    Indian Journal of Pure and Applied Mathematics, 2018, 49 : 227 - 238
  • [9] Invertible matrices and semilinear spaces over commutative semirings
    Zhao, Shan
    Wang, Xue-ping
    INFORMATION SCIENCES, 2010, 180 (24) : 5115 - 5124
  • [10] Linear preservers for matrices over a class of semirings
    Deng, Weina
    Ren, Miaomiao
    Yu, Baomin
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (21): : 6830 - 6845