Deep Reinforcement Learning-Based Resource Allocation for Content Distribution in IoT-Edge-Cloud Computing Environments

被引:12
|
作者
Cui, Tongke [1 ]
Yang, Ruopeng [1 ]
Fang, Chao [2 ]
Yu, Shui [3 ]
机构
[1] Natl Univ Def Technol, Coll Informat & Commun, Changsha 410073, Peoples R China
[2] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[3] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW 2007, Australia
来源
SYMMETRY-BASEL | 2023年 / 15卷 / 01期
基金
北京市自然科学基金;
关键词
cloud-edge cooperation; queuing theory; deep reinforcement learning; in-networking caching; content popularity; COLLABORATIVE CLOUD; CHINESE FAMINE; EARLY-LIFE; ENERGY; ARCHITECTURE; VEHICLES; TRANSMISSION; MANAGEMENT; EXPOSURE; INTERNET;
D O I
10.3390/sym15010217
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
With the emergence of intelligent terminals, the Internet of Vehicles (IoV) has been drawing great attention by taking advantage of mobile communication technologies. However, high computation complexity, collaboration communication overhead and limited network bandwidths bring severe challenges to the provision of latency-sensitive IoV services. To overcome these problems, we design a cloud-edge cooperative content-delivery strategy in asymmetrical IoV environments to minimize network latency by providing optimal computing, caching and communication resource allocation. We abstract the joint allocation issue of heterogeneous resources as a queuing theory-based latency minimization objective. Next, a new deep reinforcement learning (DRL) scheme works in each network node to achieve optimal content caching and request routing on the basis of the perceptive request history and network state. Extensive simulations show that our proposed strategy has lower network latency compared with the current solutions in the cloud-edge collaboration system and converges fast under different scenarios.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Resource allocation for content distribution in IoT edge cloud computing environments using deep reinforcement learning
    Neelakantan, Puligundla
    Gangappa, Malige
    Rajasekar, Mummalaneni
    Kumar, Talluri Sunil
    Reddy, Gali Suresh
    [J]. JOURNAL OF HIGH SPEED NETWORKS, 2024, 30 (03) : 409 - 426
  • [2] Resource Allocation Based on Deep Reinforcement Learning in IoT Edge Computing
    Xiong, Xiong
    Zheng, Kan
    Lei, Lei
    Hou, Lu
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2020, 38 (06) : 1133 - 1146
  • [3] Deep reinforcement learning-based resource allocation in multi-access edge computing
    Khani, Mohsen
    Sadr, Mohammad Mohsen
    Jamali, Shahram
    [J]. CONCURRENCY AND COMPUTATION-PRACTICE & EXPERIENCE, 2023,
  • [4] Blockchain-Based Edge Computing Resource Allocation in IoT: A Deep Reinforcement Learning Approach
    He, Ying
    Wang, Yuhang
    Qiu, Chao
    Lin, Qiuzhen
    Li, Jianqiang
    Ming, Zhong
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2021, 8 (04) : 2226 - 2237
  • [5] Edge Computing Resource Allocation Algorithm for NB-IoT Based on Deep Reinforcement Learning
    Chu, Jiawen
    Pan, Chunyun
    Wang, Yafei
    Yun, Xiang
    LI, Xuehua
    [J]. IEICE TRANSACTIONS ON COMMUNICATIONS, 2023, E106B (05) : 439 - 447
  • [6] Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
    Xu, Jianqiao
    Xu, Zhuohan
    Shi, Bing
    [J]. FRONTIERS IN BIOENGINEERING AND BIOTECHNOLOGY, 2022, 10
  • [7] Deep Reinforcement Learning Based Resource Allocation Strategy in Cloud-Edge Computing System
    Xu, Zhuohan
    Zhong, Zeheng
    Shi, Bing
    [J]. 2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [8] Deep-Reinforcement-Learning-Based Resource Allocation for Cloud Gaming via Edge Computing
    Deng, Xiaoheng
    Zhang, Jingjing
    Zhang, Honggang
    Jiang, Ping
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (06) : 5364 - 5377
  • [9] Reinforcement learning-based online resource allocation for edge computing network
    Li Y.-J.
    Jiang H.-T.
    Gao M.-H.
    [J]. Kongzhi yu Juece/Control and Decision, 2022, 37 (11): : 2880 - 2886
  • [10] Deep Reinforcement Learning-Based Task Scheduling in IoT Edge Computing
    Sheng, Shuran
    Chen, Peng
    Chen, Zhimin
    Wu, Lenan
    Yao, Yuxuan
    [J]. SENSORS, 2021, 21 (05) : 1 - 19