Taming Lagrangian chaos with multi-objective reinforcement learning

被引:7
|
作者
Calascibetta, Chiara [1 ]
Biferale, Luca [1 ]
Borra, Francesco [2 ]
Celani, Antonio [3 ]
Cencini, Massimo [4 ,5 ]
机构
[1] Univ Roma Tor Vergata, Dept Phys & INFN, Via Ric Scientif 1, I-00133 Rome, Italy
[2] Lab Phys Ecole Normale Super, 24 RueLhomond, F-75005 Paris, France
[3] Abdus Salaam Int Ctr Theoret Phys, Abdus Salam Int Ctr Theoret Phys, Quantitat Life Sci, I-34151 Trieste, Italy
[4] CNR, Ist Sistemi Complessi, Via Taurini 19, I-00185 Rome, Italy
[5] INFN Tor Vergata, Rome, Italy
来源
EUROPEAN PHYSICAL JOURNAL E | 2023年 / 46卷 / 03期
基金
欧洲研究理事会;
关键词
PURSUIT;
D O I
10.1140/epje/s10189-023-00271-0
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We consider the problem of two active particles in 2D complex flows with the multi-objective goals of minimizing both the dispersion rate and the control activation cost of the pair. We approach the problem by means of multi-objective reinforcement learning (MORL), combining scalarization techniques together with a Q-learning algorithm, for Lagrangian drifters that have variable swimming velocity. We show that MORL is able to find a set of trade-off solutions forming an optimal Pareto frontier. As a benchmark, we show that a set of heuristic strategies are dominated by the MORL solutions. We consider the situation in which the agents cannot update their control variables continuously, but only after a discrete (decision) time, tau. We show that there is a range of decision times, in between the Lyapunov time and the continuous updating limit, where reinforcement learning finds strategies that significantly improve over heuristics. In particular, we discuss how large decision times require enhanced knowledge of the flow, whereas for smaller tau all a priori heuristic strategies become Pareto optimal.
引用
收藏
页数:11
相关论文
共 50 条
  • [1] Taming Lagrangian chaos with multi-objective reinforcement learning
    Chiara Calascibetta
    Luca Biferale
    Francesco Borra
    Antonio Celani
    Massimo Cencini
    The European Physical Journal E, 2023, 46
  • [2] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Horie, Naoto
    Matsui, Tohgoroh
    Moriyama, Koichi
    Mutoh, Atsuko
    Inuzuka, Nobuhiro
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (03) : 352 - 359
  • [3] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Naoto Horie
    Tohgoroh Matsui
    Koichi Moriyama
    Atsuko Mutoh
    Nobuhiro Inuzuka
    Artificial Life and Robotics, 2019, 24 : 352 - 359
  • [4] Multi-objective ω-Regular Reinforcement Learning
    Hahn, Ernst Moritz
    Perez, Mateo
    Schewe, Sven
    Somenzi, Fabio
    Trivedi, Ashutosh
    Wojtczak, Dominik
    FORMAL ASPECTS OF COMPUTING, 2023, 35 (02)
  • [5] Federated multi-objective reinforcement learning
    Zhao, Fangyuan
    Ren, Xuebin
    Yang, Shusen
    Zhao, Peng
    Zhang, Rui
    Xu, Xinxin
    INFORMATION SCIENCES, 2023, 624 : 811 - 832
  • [6] Multi-Objective Optimisation by Reinforcement Learning
    Liao, H. L.
    Wu, Q. H.
    2010 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2010,
  • [7] Meta-Learning for Multi-objective Reinforcement Learning
    Chen, Xi
    Ghadirzadeh, Ali
    Bjorkman, Marten
    Jensfelt, Patric
    2019 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2019, : 977 - 983
  • [8] Multi-objective Reinforcement Learning for Responsive Grids
    Perez, Julien
    Germain-Renaud, Cecile
    Kegl, Balazs
    Loomis, Charles
    JOURNAL OF GRID COMPUTING, 2010, 8 (03) : 473 - 492
  • [9] Special issue on multi-objective reinforcement learning
    Drugan, Madalina
    Wiering, Marco
    Vamplew, Peter
    Chetty, Madhu
    NEUROCOMPUTING, 2017, 263 : 1 - 2
  • [10] A multi-objective deep reinforcement learning framework
    Thanh Thi Nguyen
    Ngoc Duy Nguyen
    Vamplew, Peter
    Nahavandi, Saeid
    Dazeley, Richard
    Lim, Chee Peng
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2020, 96