Computational Strategies and Estimation Performance With Bayesian Semiparametric Item Response Theory Models

被引:3
|
作者
Paganin, Sally [1 ]
Paciorek, Christopher J. [2 ,3 ]
Wehrhahn, Claudia
Rodriguez, Abel [4 ]
Rabe-Hesketh, Sophia [5 ]
de Valpine, Perry [6 ]
机构
[1] Univ Calif Berkeley, 201 Wellman Hall, Berkeley, CA 94720 USA
[2] Univ Calif Santa Cruz, 1156 High St, Santa Cruz, CA 95064 USA
[3] Univ Calif Berkeley, Stat Dept, 367 Evans Hall, Berkeley, CA 94720 USA
[4] Univ Washington, Stat, Padelford Hall,RM B-313,Box 354322, Seattle, WA 98195 USA
[5] Univ Calif Berkeley, Grad Sch Educ, Berkeley, CA 94720 USA
[6] Univ Calif Berkeley, 130Mulford Hall 3114, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
binary IRT models; Dirichlet process mixture; MCMC strategies; NIMBLE; MAXIMUM-LIKELIHOOD-ESTIMATION; PARAMETER-ESTIMATION; LATENT TRAIT; DISTRIBUTIONS; INFERENCE; ISSUES; ASSUMPTIONS; DEFINITION; EXPANSION; PRIORS;
D O I
10.3102/10769986221136105
中图分类号
G40 [教育学];
学科分类号
040101 ; 120403 ;
摘要
Item response theory (IRT) models typically rely on a normality assumption for subject-specific latent traits, which is often unrealistic in practice. Semiparametric extensions based on Dirichlet process mixtures (DPMs) offer a more flexible representation of the unknown distribution of the latent trait. However, the use of such models in the IRT literature has been extremely limited, in good part because of the lack of comprehensive studies and accessible software tools. This article provides guidance for practitioners on semiparametric IRT models and their implementation. In particular, we rely on NIMBLE, a flexible software system for hierarchical models that enables the use of DPMs. We highlight efficient sampling strategies for model estimation and compare inferential results under parametric and semiparametric models.
引用
收藏
页码:147 / 188
页数:42
相关论文
共 50 条