Single-Qubit Gates Matter for Optimising Quantum Circuit Depth in Qubit Mapping

被引:1
|
作者
Li, Sanjiang [1 ]
Ky Dan Nguyen [2 ]
Clare, Zachary [3 ]
Feng, Yuan [1 ]
机构
[1] Univ Technol Sydney, Quantum Software & Informat, Sydney, NSW, Australia
[2] Univ Sydney, Sch Comp Sci, Sydney, NSW, Australia
[3] Univ Technol Sydney, Sch Comp Sci, Sydney, NSW, Australia
基金
美国国家科学基金会; 澳大利亚研究理事会;
关键词
D O I
10.1109/ICCAD57390.2023.10323863
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Quantum circuit transformation (QCT, a.k.a. qubit mapping) is a critical step in quantum circuit compilation. Typically, QCT is achieved by finding an appropriate initial mapping and using SWAP gates to route the qubits such that all connectivity constraints are satisfied. The objective of QCT can be to minimise circuit size or depth. Most existing QCT algorithms prioritise minimising circuit size, potentially overlooking the impact of single-qubit gates on circuit depth. In this paper, we first point out that a single SWAP gate insertion can double the circuit depth, and then propose a simple and effective method that takes into account the impact of single-qubit gates on circuit depth. Our method can be combined with many existing QCT algorithms to optimise circuit depth. The Qiskit SABRE algorithm has been widely accepted as the state-of-the-art algorithm for optimising both circuit size and depth. We demonstrate the effectiveness of our method by embedding it in SABRE, showing that it can reduce circuit depth by up to 50% and 27% on average on, for instance, Google Sycamore and 117 real quantum circuits from MQTBench.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Experimental replication of single-qubit quantum phase gates
    Micuda, M.
    Starek, R.
    Straka, I.
    Mikova, M.
    Sedlak, M.
    Jezek, M.
    Fiurasek, J.
    [J]. PHYSICAL REVIEW A, 2016, 93 (05)
  • [2] Circuit Decomposition of Multicontrolled Special Unitary Single-Qubit Gates
    Vale, Rafaella
    Azevedo, Thiago Melo D.
    Araujo, Ismael C. S.
    Araujo, Israel F.
    da Silva, Adenilton J.
    [J]. IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2024, 43 (03) : 802 - 811
  • [3] Augmented fidelities for single-qubit gates
    Wudarski, Filip
    Marshall, Jeffrey
    Petukhov, Andre
    Rieffel, Eleanor
    [J]. PHYSICAL REVIEW A, 2020, 102 (05)
  • [4] Robust control of single-qubit gates at the quantum speed limit
    Cao, Xi
    Cui, Jiangyu
    Yung, Man Hong
    Wu, Re-Bing
    [J]. PHYSICAL REVIEW A, 2024, 110 (02)
  • [5] Segmented composite design of robust single-qubit quantum gates
    Kaplan, Ido
    Erew, Muhammad
    Piasetzky, Yonatan
    Goldstein, Moshe
    Oz, Yaron
    Suchowski, Haim
    [J]. PHYSICAL REVIEW A, 2023, 108 (04)
  • [6] Geometric single-qubit gates for an electron spin in a quantum dot
    Malinovsky, Vladimir S.
    Rudin, Sergey
    [J]. INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY, 2012, 112 (24) : 3744 - 3749
  • [7] Crosstalk analysis for single-qubit and two-qubit gates in spin qubit arrays
    Heinz, Irina
    Burkard, Guido
    [J]. PHYSICAL REVIEW B, 2021, 104 (04)
  • [8] Single-Loop Realization of Arbitrary Nonadiabatic Holonomic Single-Qubit Quantum Gates in a Superconducting Circuit
    Xu, Y.
    Cai, W.
    Ma, Y.
    Mu, X.
    Hu, L.
    Chen, Tao
    Wang, H.
    Song, Y. P.
    Xue, Zheng-Yuan
    Yin, Zhang-qi
    Sun, L.
    [J]. PHYSICAL REVIEW LETTERS, 2018, 121 (11)
  • [9] Learning classical readout quantum PUFs based on single-qubit gates
    Pirnay, Niklas
    Pappa, Anna
    Seifert, Jean-Pierre
    [J]. QUANTUM MACHINE INTELLIGENCE, 2022, 4 (02)
  • [10] Dynamics of dispersive single-qubit readout in circuit quantum electrodynamics
    Bianchetti, R.
    Filipp, S.
    Baur, M.
    Fink, J. M.
    Goeppl, M.
    Leek, P. J.
    Steffen, L.
    Blais, A.
    Wallraff, A.
    [J]. PHYSICAL REVIEW A, 2009, 80 (04):