Drug-drug interaction prediction based on local substructure features and their complements

被引:1
|
作者
Zhou, Qing [1 ]
Zhang, Yang [1 ]
Wang, Siyuan [1 ]
Wu, Dayu [1 ]
机构
[1] Chongqing Univ, Coll Comp Sci, Chongqing 400044, Peoples R China
关键词
Drug-drug interactions; Multi-channel feature fusion; Multi-type interactions; Substructure interactions; Feature extraction;
D O I
10.1016/j.jmgm.2023.108557
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
The properties of drugs may undergo changes when multiple drugs are co-administered to treat co-existing or complex diseases, potentially leading to unforeseen drug-drug interactions (DDIs). Therefore, predicting potential drug-drug interactions has been an important task in pharmaceutical research. However, the following challenges remain: (1) existing methods do not work very well in cold-start scenarios, and (2) the interpretability of existing methods is not satisfactory. To address these challenges, we proposed a multichannel feature fusion method based on local substructure features of drugs and their complements (LSFC). The local substructure features are extracted from each drug, interacted with those of another drug, and then integrated with the global features of two drugs for DDI prediction. We evaluated LSFC on two real-world DDI datasets in worm-start and cold-start scenarios. Comprehensive experiments demonstrate that LSFC consistently improved DDI prediction performance compared with the start-of-the-art methods. Moreover, visual inspection results showed that LSFC can detect crucial substructures of drugs for DDIs, providing interpretable DDI prediction. The source codes and data are available at https://github.com/Zhang-Yang-ops/LSFC.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] SSI-DDI: substructure-substructure interactions for drug-drug interaction prediction
    Nyamabo, Arnold K.
    Yu, Hui
    Shi, Jian-Yu
    BRIEFINGS IN BIOINFORMATICS, 2021, 22 (06)
  • [2] DDI-SSL: Drug-Drug Interaction Prediction Based on Substructure Signature Learning
    Liang, Yuan
    APPLIED SCIENCES-BASEL, 2023, 13 (19):
  • [3] Molecular Substructure-Aware Network for Drug-Drug Interaction Prediction
    Zhu, Xinyu
    Shen, Yongliang
    Lu, Weiming
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 4757 - 4761
  • [4] A substructure-aware graph neural network incorporating relation features for drug-drug interaction prediction
    Dong, Liangcheng
    Feng, Baoming
    Deng, Zengqian
    Wang, Jinlong
    Ni, Peihao
    Zhang, Yuanyuan
    QUANTITATIVE BIOLOGY, 2024, 12 (03) : 255 - 270
  • [5] A substructure-aware graph neural network incorporating relation features for drug-drug interaction prediction
    Liangcheng Dong
    Baoming Feng
    Zengqian Deng
    Jinlong Wang
    Peihao Ni
    Yuanyuan Zhang
    Quantitative Biology, 2024, 12 (03) : 255 - 270
  • [6] SSF-DDI: a deep learning method utilizing drug sequence and substructure features for drug-drug interaction prediction
    Zhu, Jing
    Che, Chao
    Jiang, Hao
    Xu, Jian
    Yin, Jiajun
    Zhong, Zhaoqian
    BMC BIOINFORMATICS, 2024, 25 (01)
  • [7] DRUG-DRUG INTERACTION PREDICTION ASSESSMENT
    Zhou, Jihao
    Qin, Zhaohui
    Sara, Quinney K.
    Kim, Seongho
    Wang, Zhiping
    Hall, Stephen D.
    Li, Lang
    JOURNAL OF BIOPHARMACEUTICAL STATISTICS, 2009, 19 (04) : 641 - 657
  • [8] Prediction of Drug Synergy and Antagonism Based on Drug-Drug Interaction Network
    Liu Wenbin
    Chen Jie
    Fang Gang
    Shi Xiaolong
    Xu Peng
    JOURNAL OF ELECTRONICS & INFORMATION TECHNOLOGY, 2020, 42 (06) : 1420 - 1427
  • [9] Learning personalized drug features and differentiated drug-pair interaction information for drug-drug interaction prediction
    Meng, Li
    He, Yunfei
    Sun, Chenyuan
    Huang, Lishan
    Hu, Taizhang
    Yang, Fei
    NEURAL NETWORKS, 2025, 181
  • [10] DSIL-DDI: A Domain-Invariant Substructure Interaction Learning for Generalizable Drug-Drug Interaction Prediction
    Tang, Zhenchao
    Chen, Guanxing
    Yang, Hualin
    Zhong, Weihe
    Chen, Calvin Yu-Chian
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (08) : 10552 - 10560