LiDAR-SGMOS: Semantics-Guided Moving Object Segmentation with 3D LiDAR

被引:0
|
作者
Gu, Shuo [1 ]
Yao, Suling [1 ]
Yang, Jian [1 ]
Xu, Chengzhong [2 ]
Kong, Hui [2 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, Jiangsu Key Lab Image & Video Understanding Socia, PCA Lab,Key Lab Intelligent Percept & Syst High, Nanjing 210094, Peoples R China
[2] Univ Macau, State Key Lab Internet Things Smart City SKL IOTS, Macau 519000, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/IROS55552.2023.10341426
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Most of the existing moving object segmentation (MOS) methods regard MOS as an independent task, in this paper, we associate the MOS task with semantic segmentation, and propose a semantics-guided network for moving object segmentation (LiDAR-SGMOS). We first transform the range image and semantic features of the past scan into the range view of current scan based on the relative pose between scans. The residual image is obtained by calculating the normalized absolute difference between the current and transformed range images. Then, we apply a Meta-Kernel based cross scan fusion (CSF) module to adaptively fuse the range images and semantic features of current scan, the residual image and transformed features. Finally, the fused features with rich motion and semantic information are processed to obtain reliable MOS results. We also introduce a residual image augmentation method to further improve the MOS performance. Our method outperforms most LiDAR-MOS methods with only two sequential LiDAR scans as inputs on the SemanticKITTI MOS dataset.
引用
收藏
页码:70 / 75
页数:6
相关论文
共 50 条
  • [1] Robust object segmentation and parametrization of 3D lidar data
    Kapp, A
    [J]. 2005 IEEE INTELLIGENT VEHICLES SYMPOSIUM PROCEEDINGS, 2005, : 694 - 699
  • [2] Integrated Object Segmentation and Tracking for 3D LIDAR Data
    Tuncer, Mehmet Ali Cagri
    Schulz, Dirk
    [J]. ICINCO: PROCEEDINGS OF THE 13TH INTERNATIONAL CONFERENCE ON INFORMATICS IN CONTROL, AUTOMATION AND ROBOTICS, VOL 2, 2016, : 344 - 351
  • [3] Receding Moving Object Segmentation in 3D LiDAR Data Using Sparse 4D Convolutions
    Mersch, Benedikt
    Chen, Xieyuanli
    Vizzo, Ignacio
    Nunes, Lucas
    Behley, Jens
    Stachniss, Cyrill
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (03) : 7503 - 7510
  • [4] Lidar Point Cloud Guided Monocular 3D Object Detection
    Peng, Liang
    Liu, Fei
    Yu, Zhengxu
    Yan, Senbo
    Deng, Dan
    Yang, Zheng
    Liu, Haifeng
    Cai, Deng
    [J]. COMPUTER VISION - ECCV 2022, PT I, 2022, 13661 : 123 - 139
  • [5] Moving Object Segmentation in 3D LiDAR Data: A Learning-Based Approach Exploiting Sequential Data
    Chen, Xieyuanli
    Li, Shijie
    Mersch, Benedikt
    Wiesmann, Louis
    Gall, Jurgen
    Behley, Jens
    Stachniss, Cyrill
    [J]. IEEE ROBOTICS AND AUTOMATION LETTERS, 2021, 6 (04): : 6529 - 6536
  • [6] Efficient Spatial-Temporal Information Fusion for LiDAR-Based 3D Moving Object Segmentation
    Sun, Jiadai
    Dai, Yuchao
    Zhang, Xianjing
    Xu, Jintao
    Ai, Rui
    Gu, Weihao
    Chen, Xieyuanli
    [J]. 2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, : 11456 - 11463
  • [7] Moving object detection algorithm and motion capture based on 3D LiDAR
    Jian Jiang
    [J]. Optical and Quantum Electronics, 56
  • [8] Moving object detection algorithm and motion capture based on 3D LiDAR
    Jiang, Jian
    [J]. OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (04)
  • [9] Boosting Lidar 3D Object Detection with Point Cloud Semantic Segmentation
    Zhang, Xuchong
    Min, Chong
    Jia, Yijie
    Chen, Liming
    Zhang, Jingmin
    Sun, Hongbin
    [J]. 2023 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2023, : 7614 - 7621
  • [10] On the Segmentation of 3D LIDAR Point Clouds
    Douillard, B.
    Underwood, J.
    Kuntz, N.
    Vlaskine, V.
    Quadros, A.
    Morton, P.
    Frenkel, A.
    [J]. 2011 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2011,