ON CONSTRUCTION OF OPTIMAL EXACT CONFIDENCE INTERVALS

被引:4
|
作者
Wang, Weizhen [1 ,2 ]
机构
[1] Wright State Univ, Dept Math & Stat, Dayton, OH 45435 USA
[2] Tianjin Univ Finance & Econ, Sch Stat, Tianjin 300222, Peoples R China
基金
北京市自然科学基金;
关键词
Admissible confidence interval; difference of two propor-tions; infimum coverage probability; p-value; vaccine efficacy; DIFFERENCE; PROPORTIONS; TESTS;
D O I
10.5705/ss.202021.0322
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
For a given confidence interval, the central value is more likely to be equal to the parameter than a boundary value is. However, when considering two null hypotheses with hypothesized values that are equal to these two values, neither of the hypotheses should be rejected, because both values are inside the interval. Here, we propose a method called the h-function method that can be used to identify any two values in an interval. The proposed method improves confidence intervals by modifying an approximate interval, including a point estimator, to be exact, and by refining an exact interval to be a subset of the previous interval. We demonstrate the proposed method by applying it to three data sets. Simulation results are given in the Supplementary Material.
引用
收藏
页码:2739 / 2762
页数:24
相关论文
共 50 条
  • [1] Exact Optimal Confidence Intervals for Hypergeometric Parameters
    Wang, Weizhen
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2015, 110 (512) : 1491 - 1499
  • [2] Exact confidence coefficients of confidence intervals for a binomial proportion
    Wang, Hsiuying
    [J]. STATISTICA SINICA, 2007, 17 (01) : 361 - 368
  • [3] Exact confidence intervals in the presence of interference
    Rigdon, Joseph
    Hudgens, Michael G.
    [J]. STATISTICS & PROBABILITY LETTERS, 2015, 105 : 130 - 135
  • [4] Exact short Poisson confidence intervals
    Kabaila, P
    Byrne, J
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2001, 29 (01): : 99 - 106
  • [5] A COMPUTER PROGRAM FOR EXACT CONFIDENCE INTERVALS
    ENGELMAN, L
    ROACH, HH
    SCHICK, GJ
    [J]. JOURNAL OF INDUSTRIAL ENGINEERING, 1967, 18 (08): : 495 - &
  • [6] Confidence intervals in optimal fingerprinting
    DelSole, Timothy
    Trenary, Laurie
    Yan, Xiaoqin
    Tippett, Michael K.
    [J]. CLIMATE DYNAMICS, 2019, 52 (7-8) : 4111 - 4126
  • [7] Confidence intervals in optimal fingerprinting
    Timothy DelSole
    Laurie Trenary
    Xiaoqin Yan
    Michael K. Tippett
    [J]. Climate Dynamics, 2019, 52 : 4111 - 4126
  • [8] Confidence curves and improved exact confidence intervals for discrete distributions
    Blaker, H
    [J]. CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 2000, 28 (04): : 783 - 798
  • [9] Optimal and Most Exact Confidence Intervals for Person Parameters in Item Response Theory Models
    Anna Doebler
    Philipp Doebler
    Heinz Holling
    [J]. Psychometrika, 2013, 78 : 98 - 115
  • [10] Optimal and Most Exact Confidence Intervals for Person Parameters in Item Response Theory Models
    Doebler, Anna
    Doebler, Philipp
    Holling, Heinz
    [J]. PSYCHOMETRIKA, 2013, 78 (01) : 98 - 115