On the Discrete Approximation by the Mellin Transform of the Riemann Zeta-Function

被引:0
|
作者
Garbaliauskiene, Virginija [1 ]
Laurincikas, Antanas [2 ]
Siauciunas, Darius [3 ]
机构
[1] Siauliai State Univ Appl Sci, Fac Business & Technol, Ausros Ave 40, LT-76241 Shiauliai, Lithuania
[2] Vilnius Univ, Inst Math, Fac Math & Informat, Naugarduko Str 24, LT-03225 Vilnius, Lithuania
[3] Vilnius Univ, Inst Reg Dev, Siauliai Acad, P Visinskio Str 25, LT-76351 Shiauliai, Lithuania
关键词
discrete limit theorem; Mellin transform; Riemann zeta-function; weak convergence;
D O I
10.3390/math11102315
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper, it is obtained that there are infinite discrete shifts ?(s + ikh), h > 0, k ? N(0 )of the Mellin transform ?(s) of the square of the Riemann zeta-function, approximating a certain class of analytic functions. For the proof, a probabilistic approach based on weak convergence of probability measures in the space of analytic functions is applied.
引用
收藏
页数:15
相关论文
共 50 条