Fibonacci-type orbifold data in Ising modular categories

被引:2
|
作者
Mulevicius, Vincentas [1 ]
Runkel, Ingo [1 ]
机构
[1] Univ Hamburg, Fachbereich Math, Hamburg, Germany
关键词
Modular tensor categories; 3d topological field theories; Generalised orbifolds; Ising type categories; CLASSIFICATION;
D O I
10.1016/j.jpaa.2022.107301
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
An orbifold datum is a collection A of algebraic data in a modular fusion category C. It allows one to define a new modular fusion category CA in a construction that is a generalisation of taking the Drinfeld centre of a fusion category. Under certain simplifying assumptions we characterise orbifold data A in terms of scalars satisfying polynomial equations and give an explicit expression which computes the number of isomorphism classes of simple objects in CA.In Ising-type modular categories we find new examples of orbifold data which - in an appropriate sense - exhibit Fibonacci fusion rules. The corresponding orbifold modular categories have 11 simple objects, and for a certain choice of parameters one obtains the modular category for sl(2) at level 10. This construction inverts the extension of the latter category by the E6 commutative algebra.(c) 2022 Elsevier B.V. All rights reserved.
引用
收藏
页数:33
相关论文
共 50 条
  • [1] Constructing modular categories from orbifold data
    Mulevicius, Vincentas
    Runkel, Ingo
    QUANTUM TOPOLOGY, 2022, 13 (03) : 459 - 523
  • [2] RANDOM FIBONACCI-TYPE SEQUENCES
    DAWSON, R
    GABOR, G
    NOWAKOWSKI, R
    WIENS, D
    FIBONACCI QUARTERLY, 1985, 23 (02): : 169 - 176
  • [3] Modular categories and orbifold models
    Kirillov Jr. A.
    Communications in Mathematical Physics, 2002, 229 (2) : 309 - 335
  • [4] Modular categories and orbifold models
    Kirillov, A
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2002, 229 (02) : 309 - 335
  • [5] SUMS OF FIBONACCI-TYPE RECIPROCALS
    GREIG, WE
    FIBONACCI QUARTERLY, 1977, 15 (04): : 356 - 358
  • [6] ON SUMS OF PRODUCTS OF FIBONACCI-TYPE RECURRENCES
    Khan, M. A.
    Kwong, Harris
    FIBONACCI QUARTERLY, 2014, 52 (01): : 20 - 26
  • [7] Zeros of a class of Fibonacci-type polynomials
    Wang, Y
    He, MF
    FIBONACCI QUARTERLY, 2004, 42 (04): : 341 - 347
  • [8] New Fibonacci-type pulsated sequences
    Atanassova, Lilija
    Andonov, Velin
    NOTES ON NUMBER THEORY AND DISCRETE MATHEMATICS, 2023, 29 (04) : 789 - 793
  • [9] Tricomplex Fibonacci Numbers: A New Family of Fibonacci-Type Sequences
    Costa, Eudes A.
    Catarino, Paula M. M. C.
    Monteiro, Francival S.
    Souza, Vitor M. A.
    Santos, Douglas C.
    MATHEMATICS, 2024, 12 (23)
  • [10] ELECTRODYNAMICS OF POLARITONS IN FIBONACCI-TYPE PIEZOELECTRIC SUPERLATTICES
    ALBUQUERQUE, EL
    COTTAM, MG
    SOLID STATE COMMUNICATIONS, 1992, 83 (08) : 545 - 549